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Here we will discuss the evaluation of entanglement measures in weakly correlated gaussian states. It will be shown how they can be expressed in terms of the singular values of a particular block of the generalized
contraction matrix. This result enables to obtain in a simple way asymptotic expressions and related area laws for the entanglement entropy of bipartitions in pure states, as well as for the logarithmic negativity associated
with bipartitions and also pairs of arbitrary subsystems. As an illustration, we consider different types of contiguous and noncontiguous blocks in two dimensional lattices. Exact asymptotic expressions are provided for
first neighbor couplings, which lead to area laws depending on the orientation and separation of the blocks.

Gaussian States

• Belong to an infinite-dimensional Hilbert Space.

• Are the equilibrium states of harmonic systems.

• Closed under unitary evolution in harmonic systems.

• Arise as semi-classical approximations of the equilibrium states of quite general
quamtum systems.

• Typical states in the context of Continuous Variable Quantum Information.

•Wick theorem: Completely determined by local expectation values and pair cor-
relations between modes.

Formalism

Correlations in gaussian states are completely determinated by its Generalized con-

traction matrix :

D = 〈ZZ†〉 −M =

(

F+ F−

F̄− F̄+ + 1

)

(1)

where Z =
(

a1, . . . , an, a
†, . . . , a†n,

)t

M = ZZ† − [(Z†)tZ t]t = ( 1
0

0
−1) is the symplectic metric and

F+
jk = 〈a†kaj〉ρ F−

jk = 〈akaj〉ρ . For a pure gaussian state F−F̄− = F+ + (F+)2

By means of a Bogoliubov Canonical Transformation it is possible to find a new
basis for the bosonic álgebra such that M remains invariant and the correspondent
F− vanishes. In such a representation, the eigenvalues {fα} of F+, known as the
Symplectic Eigenvalues, define a set of invariants associated to the state, related
with its degree of mixness.

Entanglement in Gaussian States

For a Gaussian Pure State, the entanglement between a subsystem A and its com-
plement Ā is given by the entropy of any of both subsystems[5, 6]:

EAĀ = SA = SĀ =
∑

α

h(fα
A) (2)

where fα
A are the symplectic eigenvalues associated to DA (the contraction ma-

trix of the subsystem) and h(x) = −x log x+(1+x) log(x+1) is a convex function.

For non pure states or non complementary subsystems B, C, a measure of entangle-
ment is given by the Logarithmic Negativity [7, 8]

EN
BC = log ‖ρtBBC‖1 =

∑

α/f̃αBC<0

log(1 + 2f̃α
BC) (3)

where f̃α
BC are the negative symplectic eigenvalues of the contraction matrix D̃BC

associated to the density matrix ρtBBC.

As the partial transposition is equivalent in this context to change ak ↔ a
†
k for each

k in the subsystem B and revert its order in each product, D̃BC has blocks F̃
±
BC given

by

F̃±
BC =

(

F̄±
B F̄∓

B,C
F∓
C,B F±

C

)

(4)

Weakly correlated Gaussian States

At the lowest order (in the strength of the pair-correlations F±), the entropy of
a subsystem for a global pure Gaussian State is a function of the singular values
{σα}/ det((F−

A,Ā)
†F−

A,Ā − σ2
α1Ā) = 0 of the submatrix

(F−
A,Ā)ij = 〈ajai〉

(i.e the submatrix of F−
ij with the i (j)-index associated to the subsystem A (Ā) )[1].

EA,Ā ≈
∑

α

h
(

(σα
A,Ā)

2
)

(5)

and the log-negativity of a (non-complementary) partition BC is given by [1]

EN
BC ≈ −2 log2(e)

∑

f̃BCα <0

f̃BC
α (6)

where

f̃α
B,C ≈ max

(

0,−σB,C
α +

(ḠB)αα + (GC)αα
2

)

being

GS = F̃+
S − F̃−

S
¯̃F
−
S ≈ F̃−

S,S̄
¯̃F
−
S̄,S

i.e. GS is taking into account the effect of the environment over the effective modes

entangled between B and C.

Area laws

Suppose now that correlations are “local”, so we can
think of F− as a adjacency matrix F−

ij ≈ f0Kij

K =

























− 1 2 3 4 A B C
1 0 1 1 1 1 1 1
2 1 0 0 1 1 0 0
3 1 0 0 1 0 1 0
4 1 1 1 0 0 0 0
A 1 1 0 0 0 0 1
B 1 0 1 0 0 0 1
C 1 0 0 0 1 1 0

























where f0 is a constant and Kij takes values 1(0) depending on the
modes i, j are (not) adjacent.
Calling KAB the green subblock, the number of shared links between
A and B is given by

nAB = Tr
[

K
†
ABKAB

]

=
∑

α

σ2α = ‖KAB‖22 (7)

Assuming the number of shared pairs is proportional to the minimum

area of a surface separating both subsystems, the area law [9, 10] is
satisfied trivially for this quantity.

Bipartitions

Hb =
∑

i

λb
†
ibi −

∑

{i,j}

(

b
†
ibj +

1

3
b
†
ib

†
j + h.c.

)

(8)

Scaling of the entanglement entropy and Log

Negativity for this lattice
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Figure 1: (From [1]) Scaling laws for SA and EN
A for different partitions.

Non complementary partitions

Scaling of the entanglement entropy and Log

Negativity for this lattice
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Figure 2: (From [1]) Log negativity for different non-
complementary partitions. Due to the effect of the environment,
the leading order of ENBC is higher than the contiguous case. Also

we can notice that the quotient of ENBC for subsystems sharing
tilted and parallel boundaries do not coincides with the corre-
spondent quotient of “euclidean” areas.

Extension to spin systems through the RPA bosonization method

Through the Random Phase Approximation + Symmetry Restoration method, it is
possible to connect the previous results to more general cases, as spin systems.
As an example, we will consider a spin-s system with actractive first neighbour in-
teractions in a transverse magnetic field[4, 2]:

Hs =
∑

i

bszi −
∑

µ=x,y

∑

{i,j}

vµ√
2s
sµisµj (9)

For spin systems at zero temperature, the RPA bosonization is consistent with the
approximate local bosonization

S+ i → √
sib

†
i

S− i → √
sibi

Sz i → −si + b†ibi
|MF 〉 → |0〉b

At second order in the bosonic operators, the ground state of the bosonized Hamil-
tonian is Gaussian, and because the bosonization is - at this order - a local unitary
transformation, each entanglement measures are preserved:

|GS〉b = Nb exp(Zijb
†
ib

†
j)|0〉 ↔ |RPA〉 = NRPA exp

(

Zij√
sisj

s
†
is

†
j

)

|MF 〉 (10)

If the mean field problem is degenerated due to an expontaneus symmetry breaking,
a more accurated ground state estimation is given by

|SRRPA〉 =
∑

∫

Rg|RPA〉dg (11)

where the integration is over the symmetry group, Rg is certain representation of
the symmetry group and |RPA〉 is the RPA state built over one of the mean field
solutions.
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Figure 3: (From [2])Top: Exact entanglement entropy of all even sites (left) and of a contiguous block of n/2 sites (right) in
the ground state of a one dimensional cyclic chain of n = 8 spins with anisotropic XY first neighbor couplings (Jy/Jx = 1/2)
and spin s = 1/2, 1 and 2, as a function of the transverse magnetic field. The dotted line depicts the bosonic RPA result, with
Bc = Jx the mean field critical field. We have used base 2 logarithm in the entropy, such that all entropies approach 1 at the
factorizing field Bs ≈ 0.71Bc. Bottom: Left: The corresponding ratio S(ρE)/S(ρL). Right: The entanglement entropy of all
even sites in a rectangular lattice of 4× 2 spins. Remaining details as in the top panels.

For low field, when the mean field problem is degenerated, it can be shown that the

local entropy is well approximated as SA = S
(b)
A +SMF where S

(b)
A is the local entropy

estimated by the bosonization and SMF is an almost constant term coming from the
degeneration of the mean field.

Generalizations

• The case of global non pure weakly correlated gaussian states can be recovered by
purification of the global state.

• The implementation for other measures of quantum correlatios like mutual infor-
mation or quantum discord, as well as for continuous systems are currently in
progress.
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