Álgebra Lineal: Aplicaciones Físicas - 2025

Práctica 2 - Bases y Dimensión.

- 1. Determinar cuáles de los siguientes conjuntos de pares ordenados genera el espacio vectorial $\mathbb{R}^2(\mathbb{R})$:
 - $a) \{(1,-1)\}$
 - $b) \{(2,1),(1,3)\}$
 - $c) \{(6,-9),(-4,6)\}$
 - $d) \{(1,-1),(2,-1),(3,-1)\}$
 - $e) \{(0,0),(1,-1),(3,-2)\}$
- 2. ¿Cuáles de los conjuntos anteriores resultan linealmente independientes? Para aquellos conjuntos que son base de $\mathbb{R}^2(\mathbb{R})$, encuentre las coordenadas de (1,1) y represéntelo matricialmente.
- 3. a) Demostrar que el espacio vectorial de matrices simétricas de 2×2 , sobre el cuerpo \mathbb{R} , es generado por:

$$M = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\}$$

- ¿Puede considerarse base de dicho espacio? En caso afirmativo, ¿qué vector es representado matricialmente como $(3,3,2)^T$?
- b) Encontrar un conjunto de matrices que genere el espacio vectorial de las matrices hermíticas $(A = A^{\dagger}, \text{ donde } \dagger \text{ implica transponer la matriz y conjugar sus elementos})$ de 2×2 , sobre \mathbb{R} . ¿Y sobre el cuerpo \mathbb{C} ?
- c) Ahora encontrar la base y la dimensión para el subespacio de las matrices anti-simétricas. $(A^T=-A)$.
- 4. ¿Es el conjunto de matrices $M = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix} \right\} \subset \mathbb{R}^{2 \times 2}(\mathbb{R})$ linealmente independiente? En caso afirmativo, encontrar las coordenadas de una matriz

$$A = \left(\begin{array}{cc} a & b \\ c & a \end{array}\right) \in \mathbb{R}^{2 \times 2}$$

- que además pertenezca al espacio generado por M, considerando a este conjunto como base. ¿Cuál es la dimensión de dicho subespacio?
- 5. Indicar si los siguientes conjuntos son linealmente independientes. En los casos afirmativos, estudiar si forman base. ¿Cuál es la dimensión del espacio vectorial?
 - a) Los vectores z = 1 + i y z = 1 i en $\mathbb{C}(\mathbb{C})$. ¿Y en $\mathbb{C}(\mathbb{R})$?
 - b) Los vectores (1,0,1), (1,1,0) y (1,0,-1) en $\mathbb{R}^3(\mathbb{R})$
 - c) Los vectores $v_1 = e_1 + e_3$, $v_2 = e_1 e_2$, $v_3 = e_1 + e_2 + e_3$, si los vectores e_1 , e_2 y e_3 , pertenecientes a un cierto espacio vectorial V (dimV = 5) son linealmente independientes
- 6. Considere un espacio vectorial \mathbb{V} , definido sobre el cuerpo \mathbb{K} , generado por el conjunto de vectores $\{v_1, v_2, v_3, \ldots, v_n\}$. Demostrar que la unicidad del desarrollo $v = C_1v_1 + C_2v_2 + C_3v_3 + \ldots + C_nv_n$, para deteminado vector $v \in \mathbb{V}$, falla si el conjunto $\{v_1, v_2, v_3, \ldots, v_n\}$ es linealmente dependiente.
- 7. Demostrar que $\{v_1, v_2, ..., v_n\}$ es un conjunto de vectores linealmente independientes de un espacio vectorial V, si y sólo si $\{v_1 + v_n, v_2 + v_n, ..., v_{n-1} + v_n, v_n\}$ es un conjunto de vectores linealmente independientes.

1

- 8. Mostrar que si $\{v_1, v_2, v_3\}$ es un conjunto de vectores linealmente independientes de un espacio vectorial V entonces todos sus subconjuntos propios: $\{v_1\}$, $\{v_2\}$, $\{v_3\}$, $\{v_1, v_2\}$, $\{v_2, v_3\}$, $\{v_1, v_3\}$ son subconjuntos de vectores linealmente independientes. ¿Vale la recíproca?
- 9. Sea V un espacio vectorial sobre un cuerpo K. Sea $\{u_1, u_2, ..., u_n\}$ un conjunto de vectores linealmente independientes de V. Sea $a = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n$, con $\alpha_j \in K$ (para j = 1, ..., n). Probar que si $\alpha_1 + \alpha_2 + ... + \alpha_n = 1$, entonces $\{u_1 a, u_2 a, ..., u_n a\}$ son linealmente dependientes.
- 10. Demuestre que en un espacio vectorial V de dimensión n cualquier conjunto de n vectores linealmente independientes es una base para V.
- 11. a) Probar que si $\{v_1, v_2, v_3, \dots, v_m\}$ es una base de $V \subset \mathbb{R}^n(\mathbb{R})$, entonces m < n.
 - b) Considerando la hipótesis del inciso anterior, probar que existen vectores $v_{m+1}, v_{m+2}, \ldots, v_n \in \mathbb{R}^n$ tales que $\{v_1, v_2, v_3, \ldots, v_n\}$ resulta ser una base de $\mathbb{R}^n(\mathbb{R})$.
 - c) Ilustrar estos resultados construyendo una base de $\mathbb{R}^3(\mathbb{R})$, que incluya a (1,0,-1).
- 12. En $\mathbb{P}(\mathbb{R})$, expresar $v(t) = t^2 + 4t 3$ como combinación lineal de $p_1(t) = t^2 2t + 5$, $p_2(t) = 2t^2 3t$ y $p_3(t) = t + 3$.
- 13. Considere el espacio vectorial de funciones $f: \mathbb{R} \to \mathbb{R}$ sobre el cuerpo \mathbb{R} . Demostrar que $\sin(x)$ y $\cos(x)$ constituyen un conjunto de vectores linealmente independientes. **Ayuda:** en el caso de funciones la independencia lineal no depende del valor que tome el argumento x.

Determine si las funciones $\sin(x)$, $\cos(x)$, $\sin(x+\pi/3)$ son también linealmente independientes.

¿Qué sucede en el caso de las funciones 1, $\cos(x)$, $\sin(x)$, $\cos^2(x)$ y $\sin^2(x)$

¿Y en el caso de e^x y e^{x+1} ?

14. Probar que $1 + t^2$, $t + t^2$ y $1 + 2t + t^2$ son una base del espacio de polinomios reales de segundo grado. ¿Cuál es la dimensión de éste espacio?

Hallar las coordenadas de $1 + 4t + 7t^2$ en esta base y representarlo matricialmente.

15. El Wronskiano de dos funciones f(t) y g(t), diferenciables en el intervalo [a, b], es la funcion escalar definida por:

$$W[f,g](t) = \text{Det} = \begin{vmatrix} f(t) & g(t) \\ f'(t) & g'(t) \end{vmatrix}$$

Demostrar que si $\exists t_0 \in [a, b] / W[f, g](t_0) \neq 0$ entonces f(t) y g(t) son linealmente independientes en [a, b]. Demostrar que no vale la recíproca.

16. Encontrar los valores de k para los cuales $f_k(x) = e^{kx}$ resulta solución de la ecuación diferencial:

$$\frac{d^2f_k}{dx^2} - \frac{df_k}{dx} - 2f_k = 0 \tag{1}$$

A partir del resultado obtenido en 15), mostrar que el conjunto de funciones $\mathcal{F} = \{f_k(x)\}$, tal que k toma sólo los valores obtenidos previamente, es linealmente independiente. Considerando a \mathcal{F} como base, ordenado arbitrariamente, qué vector es representado matricialmente como $(3, -1)^T$.