
C

Variables and Arithmetic Expressions

Comments

Declarations

Assignment statements

tab

Using for

Symbolic constants

Character Input and Output

Getchar and putchar

Character counting

++ is increment by one (nc=nc+1) also nc++
n=5
X = n++ (x=5, n=6)
X = ++n (x=6, n=6)

Long = 32 bits (int = 16)

Null statement

Line counting

A character written between single quotes represents an integer
value equal to the numerical value of the character in the
machine's character set.

Same matlab or python

Arrays
Let us write a program to count the
number of occurrences of each digit, of
white space characters (blank, tab,
newline), and of all other characters.

The output of this program on itself is
 Digits = 9 3 0 0 0 0 0 0 0 1, white space = 123, other = 345

array

Functions

A function provides
a convenient way
to encapsulate
some computation,
which can then be
used without
worrying about its
implementation.

In C, all function arguments are passed "by value." This means that the called function is given the
values of its arguments in temporary variables rather than the originals.

Character Arrays
No value returned getline puts the character '\0' at the end of the

array it is creating, to mark the end of the string
of characters. This convention is also used by
the C language:

External Variables and Scope

The variables in main, such as line, longest, etc., are private or local to main. Because they are declared within main, no
other function can have direct access to them. As an alternative to automatic variables, it is possible to define variables
that are external to all functions, that is, variables that can be accessed by name by any function .

Punteros

A pointer is a variable that contains the address of a variable. Pointers are
much used in C, partly because they are sometimes the only way to express
a computation, and partly because they usually lead to more compact and
efficient code than can be obtained in other ways.

The unary operator & gives the address of an object, so the statement

P = &c;

assigns the address of c to the variable p, and p is said to "point to" c.

The & operator only applies to objects in memory: variables and array elements.
It cannot be applied to expressions, constants, or register variables.

The unary operator * is the indirection or dereferencing operator; when applied to a
pointer, it accesses the object the pointer points to.

Suppose that x and y are integers and ip is a pointer to int. This artificial sequence
shows how to declare a pointer and how to use & and *:

You should note the implication that a pointer is constrained to point to a
particular kind of object: every pointer points to a specific data type.

 If ip points to the integer x, then *ip can occur in any context where x could.

Since pointers are variables, they can be used without dereferencing.

For example, if iq is another pointer to int,

 iq = ip

copies the contents of ip into iq, thus making iq point to whatever ip
pointed to.

Pointers and Function Arguments

Since C passes arguments to functions by value, there is no direct
way for the called function to alter a variable in the calling function.
For instance, a sorting routine might exchange two out-of-order
elements with a function called swap.

 It is not enough to write
 swap(a, b);

where the swap function is defined as

Because of call by value,
swap can't affect the
arguments a and b in the
routine that called it. The
function above only swaps
copies of a and b.

The way to obtain the desired effect is for the calling program to pass pointers to
the values to be changed:

 swap(&a, &b);

Since the operator & produces the address of a variable, &a is a pointer to a.

In swap itself, the parameters are declared to be pointers, and the operands are
accessed indirectly through them.

Pointers and Arrays

In C, there is a strong relationship between pointers and arrays, strong enough that
pointers and arrays should be discussed simultaneously.

Any operation that can be achieved by array subscripting can also be done with
pointers.

The pointer version will in general be faster but somewhat harder to understand.

The declaration
 int a[10];

defines an array a of size 10, that is, a block of 10 consecutive objects named a[0],
a[1], … a[9].

If pa is a pointer to an integer, declared as
 int *pa;

then the assignment
 pa = &a[0];
sets pa to point to element zero of a; that is, pa contains the address of a[0].

Now the assignment

 x = *pa;

 will copy the contents of a [0] into x.

If pa points to a particular element of an array, then by definition pa+1points to
the next element,
 pa+i points i elements after pa,
 and
 pa-i points ielements before.

Thus, if pa points to a[0],

 pa+i is the address of a[i],
 and

 *(pa+i) is the contents of a[i].

These remarks are true regardless of the type or size of the variables in the array a.

The meaning of "adding 1 to a pointer," and by extension, all pointer arithmetic, is that
pa+1 points to the next object, and pa+i points to the i-th object beyond pa.

The correspondence between indexing and pointer arithmetic is very close.

By definition, the value of a variable or expression of type array is the address
of element zero of the array. Thus after the assignment

 pa = &a[0];

pa and a have identical values. Since the name of an array is a synonym for
the location of the initial element, the assignment pa=&a [0] can also be writ-
written as

 pa = a;

There is one difference between an array name and a pointer that must be kept in
mind. A pointer is a variable, so pa=a and pa++ are legal. But an array name is not a
variable; constructions like a=pa and a++ are illegal.

