#include <stdio.h> include information about standard library
main() define a function named main
that receives no argument values

{ statements of main are enclosed in braces
printf("hello, world\n"}; main calls library function printf

} to print this sequence of characters;

\n represents the newline character

The first C program.

Variables and Arithmetic Expressions

#include <stdio.h>

/+ print Fahrenheit-Celsius table

Comments
for fahr = 0, 20, ..., 300 «/
main() char character—a single byte
{ short short integer
int fahr, celsius; Declarations long long integer
int lower s upper, step; double double—precision floating point
lower = 0; /+ lower limit of temperature table */
upper = 300; /+ upper limit «/)
step = 20: ’ /+ step size «/ Assignment statements
fahr = lower;
while (fahr <= upper) { %d print as decimal integer
. _ %64a print as decimal integer, at least 6 characters wide
celsius = 5 » (fahr-32 %£ print as floating point
printf ("%d\t%d\n", fahj xet print as floating point, at least 6 characters wide
ahr = o %.2f print as floating point, 2 characters after decimal point
£ fahr grep; %6 .2f print as floating point, at least 6 wide and 2 after decimal point

tab

#include <stdio.h>

/% print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300; floating-point version */
main()

{
float fahr, celsius;
int lower, upper, step;

lower = 0; /% lower limit of temperature table »/
upper = 300; /% upper limit »/
step = 20; /% step size »/

fahr = lower;

while (fahr <= upper) {
celsius = (5.0/9.0) * (fahr-32.0);
printf("%¥3.0f %6.1f\n", fahr, celsius);
fahr = fahr + step;

Using for

Symbolic constants

#define name

replacement text

#include <stdio.h>

int fahr;

/+ print Fahrenheit-Celsius table »/
main()

for (fahr = 0; fahr <= 300; fahr = fahr + 20)

printf("%3d %6.1f\n", fahr, (5.0/9.0)x(fahr-32));

#include <stdio.h>

#define LOWER O /*
#define UPPER 300 /»
#define STEP 20 /»

/% print Fahrenheit-Celsius
main()

{

int fahr;

for (fahr = LOWER; fahr

printf("%3d %6.1f\n"

lower limit of table »/
upper limit =/
step size =/

table »/

<= UPPER; fahr = fahr + STEP)
, fahr, (5.0/9.0)x(fahr-32));

Character Input and Output

The standard library provides several functions for reading or writing one
character at a time, of which getchar and putchar are the simplest. Each
time it is called, getchar reads the next input character from a text stream
and returns that as its value. That is, after

c = getchar()

the variable c contains the next character of input. The characters normally
come from the keyboard; input from files is discussed in Chapter 7.
The function putchar prints a character each time it is called:

putchar(c)

prints the contents of the integer variable ¢ as a character, usually on the
screen. Calls to putchar and printf may be interleaved;

Getchar and putchar

#include <stdio.h>

/% copy input to output; 1i1st version »/
main()
{

int c;

c = getchar();
while (c != EOF) {
putchar(c);

c = getchar();

}

The relational operator 1= means “not equal to.”

#include <stdio.h>

/+ copy input to output; 2nd version »/
main()

{
int c;
while ((c = getchar()) != EOF)
putchar(c);
}

The problem is distinguishing the end of the input from valid data. The
solution is that getchar returns a distinctive value when there is no more
input, a value that cannot be confused with any real character. This value is
called EOF, for “end of file.” We must declare ¢ to be a type big enough to
hold any value that getchar returns. We can’t use char since ¢ must be big
enough to hold EOF in addition to any possible char. Therefore we use int.

Character counting

#include <stdio.h>

/+ count characters in input; 1st version #/

main()
{
long nc; Long = 32 bits (int = 16)
nc = 0; ++ is increment by one (nc=nc+1) also nc++
while (getchar() != EOF) n=5
+4+NC;
: = X =n++ (x=5, n=6)
tf("%1a\n",) I ’
} printf nlias X = ++n (x=6, n=6)

#include <stdio.h>

/% count characters in input; 2nd version =/
main()
{

double nc;

for (nc = 0; getchar() != EOF; ++nc)

0 Null statement
printf("%.0£\n", nc);

Line counting

#include <stdio.h>

/+ count lines in input =/

main()
{
int ¢, nl;
nl = 0;
while ((c = getchar()) |= EOF)
if (c == "\n’) A character written between single quotes represents an integer
++Nl, < value equal to the numerical value of the character in the

printf("%d\n", nl); machine's character set.

Same matlab or python

Arrays

Let us write a program to count the

number of occurrences of each digit, of

white space characters (blank, tab,
newline), and of all other characters.

#include <stdio.h>

/% count digits, white space, others #/
main()

{

int ¢, i, nwhite, nother;

////////////*' int ndigit[10];

array

The output of this program on itself is

nwhite = nother = 0;
for (i = 0; 1 < 10; ++1i)
ndigit([i] = 0;

while ((c = getchar()) != EQF)
if (c >= ‘0’ && ¢c <= ‘9’)
++ndigit[c~‘0’];
else if (¢ == * * il ¢ == “\n’ I| ¢ ==
++nwhite;
else
++nother;

printf("digits =");

for (i = 0; i < 10; ++1)
printf(" %d", ndigit(i]);

printf(", white space = %d, other = %d\n",
nwhite, nother);

Digits=930000000 1, white space = 123, other = 345

l\t')

#include <«<stdio.h>

Functions
<:::>power(int m, int n);
/% test power function */
A function provides main()
a convenient way {
to encapsulate int i;

some computation,

which can then be

used without

worrying about its }

implementation.
power: raise base to n-th power; n >= 0 =/
power(int base, int n)
{

int i, p;

for (i = 0; i < 10; ++1i)
printf("%d %d %d\n", i, power(2,i), power(-3,i));
return 0;

P =13
for (i = 1

return p;

In C, all function arguments are passed "by value." This means that the called function is given the
values of its arguments in temporary variables rather than the originals.

N | { q getline puts the character \0' at the end of the
O value returne array it is creating, to mark the end of the string

of characters. This convention is also used by

Character Arrays

#include <stdio.h> .
#define MAXLI 1000 /% maximum input line size #/ the C Ianguage' Lh I e | 1 | 1] o I \n L\OI

int line(char line[], int maxline);
void copy(char to[], char from[]); /% getline: read a line into s, return length »/
int getline(char s[], int 1im)
/% print longest input line »/ {
main() int ¢, i;
{
int len; /% current line length */ for (i=0; i<lim-1 && (c=getchar())!=EOF && cl=’\n’; ++i)
int max; /% maximum length seen so far »/ sli] = c;
char line[MAXLINE]; /+ current input line */ if (¢ == "\n’) {
char longest[MAXLINE]; /» longest line saved here »/ sli] = c;
++13
max = 0; }
while ((len = getline(line, MAXLINE)) > 0) sli] = “\o";
if (len > max) { return i;
max = len; }
copy(longest, line);
) } /% copy: copy ‘from’ into ’to’; assume to is big enough »/
if (max > 0) /% there was a line #/ void copy(char to[], char from[])
printf("%s", longest); {
return 0; int i;
}
i= 0;
while ((toli] = from[i]) 1= ’\0’)
++1;

External Variables and Scope

The variables in main, such as line, longest, etc., are private or local to main. Because they are declared within main, no
other function can have direct access to them. As an alternative to automatic variables, it is possible to define variables
that are external to all functions, that is, variables that can be accessed by name by any function

#include <stdio.h>

#define MAXLINE 1000 /% maximum input line size »/
/% getline: specialized version */
int max; /% maximum length seen so far »/ int getline(void)
char line[MAXLINE]; /% current input line »/ {
char longest[MAXLINE]}; /+ longest line saved here #/ int ¢, i;

extern char linel];
int getline(void);

i i £ i = 0; i < MAXLINE-1
void copy(void); or (i i<

&8 (c=getchar()) I= EOF && c I= ‘\n’; ++i)
line[i] = c;
if (¢ == ‘\n’) {
linel[i] = c;

/% print longest input line; specialized version #/ ++i3
main() }. : N
{ line[il] = ’\0’;
A return i;
int len; }
extern int max;
extern char longest[]; /+ copy: specialized version »/
void copy(void)
max = 0; {

while ((len = getline()) > 0)

- int i;
if (len > max) {

extern char line[], longest(];

max = len;
copy(); i=0;
} hile ((1 t[i] = line[i]) 1= °\0°
if (max > 0) /% there was a line »/ wat f+;f ongest[i] linelil) 1 No*)

printf("%s", longest);
return 0;

Punteros

A pointer is a variable that contains the address of a variable. Pointers are
much used in C, partly because they are sometimes the only way to express
a computation, and partly because they usually lead to more compact and
efficient code than can be obtained in other ways.

The unary operator & gives the address of an object, so the statement
P =&c;
assigns the address of c to the variable p, and p is said to "point to" c.

The & operator only applies to objects in memory: variables and array elements.
It cannot be applied to expressions, constants, or register variables.

The unary operator * is the indirection or dereferencing operator; when applied to a
pointer, it accesses the object the pointer points to.

Suppose that x and y are integers and ip is a pointer to int. This artificial sequence
shows how to declare a pointer and how to use & and *:

int x =1, vy = 2, z[10];

int *ip; /% ip is a pointer to int +/
ip = &x; /% ip now points to x «/

y = #ip; /% y is now 1 =/

»ip = 0; /% x is now 0 =/

ip = &z[0]; /% ip now points to z[0] »/

You should note the implication that a pointer is constrained to point to a
particular kind of object: every pointer points to a specific data type.

If ip points to the integer x, then *ip can occur in any context where x could.

Since pointers are variables, they can be used without dereferencing.
For example, if iq is another pointer to int,
iq = Ip

copies the contents of ip into ig, thus making iq point to whatever ip
pointed to.

Pointers and Function Arguments

Since C passes arguments to functions by value, there is no direct
way for the called function to alter a variable in the calling function.
For instance, a sorting routine might exchange two out-of-order
elements with a function called swap.

It is not enough to write
swap(a, b);

where the swap function is defined as

voild swap(int x, int y) /» WRONG »/ Because of call by value,
vt swap can't affect the
int temp; .
arguments a and b in the
temp = X; routine that called it. The
X = Y; function above only swaps
y = temp; copies of a and b.

The way to obtain the desired effect is for the calling program to pass pointers to
the values to be changed:

swap(&a, &b);

Since the operator & produces the address of a variable, &a is a pointer to a.

In swap itself, the parameters are declared to be pointers, and the operands are
accessed indirectly through them.

void swap(int xpx, int #py) /# interchange #*px and *py »*/
{

int temp;

temp = *px;
*PX = *pVy;
*py = temp;

Pointers and Arrays

In C, there is a strong relationship between pointers and arrays, strong enough that
pointers and arrays should be discussed simultaneously.

Any operation that can be achieved by array subscripting can also be done with
pointers.

The pointer version will in general be faster but somewhat harder to understand.

The declaration

int a[10];
defines an array a of size 10, that is, a block of 10 consecutive objects named a[0],
a[1], ... a[9].

a[0]al1] al9]

If pa is a pointer to an integer, declared as
int *pa;
then the assignment
pa = &al0];
sets pa to point to element zero of a; that is, pa contains the address of a[0].

—\

al[0]

pa:

Now the assignment

will copy the contents of a[0] into x.

If pa points to a particular element of an array, then by definition pa+1points to
the next element,
pa+i points i elements after pa,
and
pa-i points ielements before.

Thus, if pa points to a[0],
pa+iis the address of a[i],
and
*(pa+i) is the contents of a[i].

pa: pa+1: pa+2:

a.

al0]

These remarks are true regardless of the type or size of the variables in the array a.

The meaning of "adding 1 to a pointer," and by extension, all pointer arithmetic, is that
pa+1 points to the next object, and pa+i points to the i-th object beyond pa.

The correspondence between indexing and pointer arithmetic is very close.

By definition, the value of a variable or expression of type array is the address
of element zero of the array. Thus after the assignment

pa = &al0];

pa and a have identical values. Since the name of an array is a synonym for
the location of the initial element, the assignment pa=&a [0] can also be writ-
written as

pa = a;

There is one difference between an array name and a pointer that must be kept in
mind. A pointer is a variable, so pa=a and pa++ are legal. But an array name is not a
variable; constructions like a=pa and a++ are illegal.

