PHY 5346
HW Set 1 Solutions — Kimel

1. 1.1

Background:
Gauss's Law: | E - da = e

€

Also, a conductor is defined as a material in which the cor(l)ducting electrons move freely if an external
electric field is applied. Thus in static equilibrium, there is no electric field present within a conductor; similarly an
electric field parallel to the surface of the conductor would cause charges to move on the surface, and so this electric
field cannot exist in static equilibrium. We conclude only electric fields perpendicular to the suface of the conductor
can exist.

a) From the above arguments, the excess charge lies completely on the surface.

b) Consider a closed hollow conductor. Now bring up a collection of charges on the outside (bring them
slowly so that static equillibrium alway obtains.) From our above arguments, the electric field lines from the charges
never penetrate the conductor, so the hollow region within is shielded. On the other hand, if charges are placed within
the hollow part of the conductor, electric fields exist throughout the interior because Gauss’s law shows the electric
field is non-zero for any surface within the interior which encloses the charges brought in.

c¢) Consider the Gaussian pillbox

E

Gauss’s Law gives
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2
1.3 In general we take the charge density to be of the form p = f(r)s, where f(r) is determined by
physical constraints, such as j pd3x = Q.
a) variables: r,0,¢. d*x = d¢dcosOr2dr

p =fs(r-R) = f(rNs(r -R) = f(RS(r —R)

__Q _
p(?) - 47TR2 6(r R)
b) variables: r,¢,z. d*x = d¢dzrdr
p@®) = fM)5(r — b) = f(b)5(r —b)
j pd3x = f(b) j dzdgrdrs(r — b) = 2zf(b)bL = AL — f(b) = ZL

b
_ A _
p(r) = b o(r—Db)

c) variables: r,¢,z d3x = dg¢dzrdr Choose the center of the disk at the origin, and the z-axis
perpendicular to the plane of the disk

p(r) = f(N5(20(R-r) = f5(200(R-7r)
where O(R—r) is a step function.

[ pdx = £ [ 6@(R - r)dpdzrar = 2nR72f _Qof= ngez

p® = —L6@OR-1)

d) variables: r,0,¢. d*x = d¢dcosOr?dr
p(r) = f()d(cos)O(R-r) = f(r)5(cosf)I(R—r)

j‘pd3x = If(r)&(cos@)@(R— ryd¢dcosdr2dr = I:[f(r)r]rdrdqﬁ = 27N I:rdr =7R°N=0Q

where I’ve used the fact that rdrd¢ is an element of area and that the charge density is uniformly
distributed over area.

__Q _
p(r) = nRzrcS(cosG)e(R r
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3. 1.4 Gauss’s Law:
_[E R d_a' — Qergc(l)o%d

a) Conducting sphere: all of the charge is on the surface o = —2

47a?

E4nr2 =0,r <a Ednr? = Q >a

==
E=0,r<a E= Q f, r>a
471'80[‘2
~
E e
M.
T
b S
e —
0 a

b) Uniform charge density: p = %ag, r<a p=0rYa
37[

3
E4 r2=Q—r—>E= Qr , r<a
d goal Argqad
Earr2 - L LE-—Q _ (va
d €0 471'80[‘2 Z
K
.
S
M
e
e
————
0 a
c)p=Ar"
Q= 47r_“r2drAr” = 4zAa™3/(N+3) - p = %r”, r<a
p=0 ra
_ (n+3)Q __Q rn3
E47Z'r2 = W4ﬂ'rm—3/(n+3) - E= 47[80r2 an+3 , Fr<a
Q
= ——F, r a
471'80[‘2 Z
l.n=-2
Q r<a

~ Axggra’
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4.15
—ar (1 4 o
¢(?) - £ 4(71'80r -
oo b (5 - 4e)]

24 q Li _ —ar —ar Zi l _a_22—ar
V¢ 471'80 rz ar|: are +e"r ar r) r<e i|

2 a—ar —ar 2 a—ar 3q-ar
__q [_%e—ar+0{? +a(r92 _47r5(f')_a(re L o’e }

_ 1 9o’ ar
<& w0 - fre ]

_ e A
p() = qo(") — g —e

That is, the charge distribution consists of a positive point charge at the origin, plus an
exponentially decreasing negatively charged cloud.
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2.1.8 We will be using Gauss’s law [ E - dg = e
a) 1) Parallel plate capacitor

2
From Gauss’s law E = 2 =
Q \? IR
W= 20 [E2dx = citad _ el ) A 4 Ly 1\ ) d= Lotz
2 2 2 2¢0 A 2¢0 A 2 d
2) Spherical capacitor
Q -Q
b
From Gauss’s law, E = - r%, a<r<bh.
b b
_ _ 2 L& (b—a) N _ 47rsoba¢12
¢12‘IaEdr‘ =47 pa "9 “(b-a)
_ 80 (230 _ B0 _Q )2 2dr_s_o(Q 2 b+a)_ _1 Q? (b-a)
W_Z.“EdX_Z(4nso).“a4 42 4%0)(4% ba ) 8o ™ ba
4reobagy,
g (e Gy ) b-a) _ 9%
W= 8oo ba 27rsoba(b_a)

3) Cylindrical conductor



-

From Gauss' s law, E2zrL = A—OL -9

€0

¢12=jbEdr: Q jb$_ Q__n()

2reol - 2meol
_ 2o [E2gey — £0 Q)Z "rar _ 1 Q%
w 2 IEdX 2(27rsoL anIa r2 dreg L |
(27r80|-¢12 )2 )
_ 1 In(%) by _ o1
W= 4reg L In( a) = meol InL
b)w= 2E?
& 2 2 .
1) w(r) = TO(A%) -~ %O% 0<r <d, = 0otherwise.
W
r
0 d
€ 2 2 .
2) w(r) = 2 (& r% _ 32;)”2 ?—4, a<r<b, =0, otherwise

W N\
\

e

——

a b r

1 Q?

= %o zzzy — 0 otherwise.

Jwr) = 2(52-)" =

2 \ 2reolr

n(

b
a

)



fn ol
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3. 1.9 I will be using the principle of virtual work. In the figure below, Fél is the work done by an
external force. If Fis along 4l (ie. is positive), then the force between the plates is attractive. This
work goes into increasing the electrostatic energy carried by the electric field and into forcing charge
into the battery holding the plates at constant potential ¢ 5.

&l
Q ¢

oQ

Conservation of energy gives
Fol = OW+ 5Q¢12

or
Q| F o
From problem 1.8,
a) Charge fixed.
1) Parallel plate capacitor
dQ
_ 1, a9% _4dQ w_ 1 (To) d A2
W= 2eATg 2 = 2o = W= eA——g— = 7aQ
2
aa_? 0 F= 56—\1\/ - 2? . (attractive)
0

2) Parallel cylinder capacitor

P12 = %'n(g), a= Jaiaz

_1 SFE=OW _1 _12Q
W= 5Q¢12 > F =5 Q80 =g In( ) = 5 5oq (attractive)

b) Potential fixed

1) Parallel plate capacitor
Using Gauss’s law, Q = ¢12A50 ¢12A80

|§el =



Qd 2
L. _1 Qﬁ_ ¢éNM__i Qﬁ__l (EK) _ 1 ~2
F = 2 ()A d2 + d2 = 280A d2 = 280A d2 = 280AQ
2) Pardld cylinder capacitor

W= 1Qps, andQ - Eolgr

In(<)
_1e0be%, ow 1 3

A Ee SR E S (T T

aQ‘ P12

O | —goL—¥12

‘ RN (XY
1 ¢% ¢% 1 ¢%

F=—%2¢ol L = fgol—212__

2% (I g)d T (i gyd ~ 2% (in?g)d
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2. 1.10 T will base the solution on the application of Green’s theorem, which results in eq. 1.36 from the

textbook: ) @) . 1 96 5 )
- PT) 3, L 109 O (1 !
(@) = 4meg /V R ¢+ 4%7{9 {R on’ on' <R)] da

Since the volume includes no charge, the first term on the rhs vanishes. For the second term
0p = .
— =V¢-W' =—-E- -7
on/ ¢
Note
E-#'dd = / V' Eddr by the divergence theorem
v

Using the fact that
Y
V - E=p&)/eo
then the second term of the first equation also vanishes, since the volume integrated over contains no charge.

Since % (%) =— #, where R is the radius of the sphere, and I’m taking the origin at the center of the sphere,

1
H(T) = e f (&' )da’ = mean value of the potential over the sphere.
s
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421 We will work in cylidrical coordinate, (p, z ¢), with the charge g located at the point
d = dz, and the conducting plane is in the z = 0 plane.

Then we know from class the potential is given by

- _1 a ___4¢g
@] 7 7

1 1

EZ:_47?8 % > N2 > o\ 12
0 ((z-d)*+p?) ((z+d)? +p?)

E, - q z—d _ z+d
meo | (z-d)?+p?)™ (@+d)?+p?)™
a) o = goEz(z=0)

o = o3 d _ +d _ 9 1
oo | (G 4p)™ (ed? )™ ] 2 (1o (2y2)

Plotting —L—- gives

(12412) 3

1 2t o3 4 5
0
02]
041
06
08]
4
b) Force of charge on plane
N _ 2
F= 47rlso ?éd?z) 9= 7 411%80 g_z
c)
2
R Al Pl prerell Bk = TRE
(12+(£)%)? ° w2dt(1+ L)
2 2 2
F=2r 880(:7][2d4 If (1 +pg_§)3 dp = 2r 880(:71[2(14 (%dz) _ Tinso%



d)

I T Pdz _ @
W_Id Fdz = Adx4rey Jg 22 4x4rmed
€
1 1 qid 9
W:— gy =
2 4ngg |1>qu Xi — X 2 x 4reod

Notice parts d) and €) are not equal in magnitude, because in d) the image moves when g moves.

f) 1 Angstrom=10"m, g = e = 1.6 x 107°C.

_ q2 o e _ D1_6X10—19 o\ _
W= 4X47Z'8()d _b4)<47rgod e 4 x 1010 9x10°V =3.6¢eV
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5. 2.2 The system is described by

4 q
T y'

({4

a) Using the method of images
_ 1 q q
o0 = | 755 757
withy' = & andq' = -g2

b) o = —805%(]5|x=a = +805ix¢|x=a

o =g — g + d
Areg OX (XZ + y2 _ 2XyCOS}/)1/2 (X2 + y/2 _ 2Xy/ COS}/)UZ

yZ
o1 a-%)
4m (y2 + a2 — 2aycosy)

3/2
Note

2 1
Ginduced = 82 j'ng = _qﬁa&na(l - %) I_l i d_XzayX)3/2 ;

where X = cosy

2
Clinduced = _%a(az —YZ)W =—q
c)
! 2
F| = 99 - _1 9-ay , the force is attractive, to the right.
|F| ‘471‘80()/’ —y)? dreo (@2 —y?) I v 19

d) If the conductor were fixed at a different potential, or equivalently if extra charge were put on
the conductor, then the potential would be

i

__1 g g
¢ 4nso[ﬁ—w+&—w}v

and obviously the electric field in the sphere and induced charge on the inside of the sphere would
remain unchanged.
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2. 2.3 The system is described by

¥
A A
—e 2 ®
X
™ 4 o4
3 i

a) Given the potenial for a line charge in the problem, we write down the solution from the figure,
A R? R? R? R?
ot = |:In — —1In = —In = +1In = :|
Aneo (X—Xo)? (X = Ro1)? X—Xe2)? (X —Xa3)?
Looking at the figure wheny = 0, (X—%)* = (X—%o1)?, R—%2)” = X —X03)%, S0 ¢7ly0 = O
Similarly, when x = 0, (X —Xo)? = (X—%02)%, (X —=Xo1)? = (X—Xo3)%, 50 ¢7lxco = O
On the surface ¢t = 0, so 6¢t = 0, however,

_ 9t 0 91 _ oL E _
Spr = FIox =0~ FL -0~ E=0

b) We remember
S | e
o T Lx-x)P+yE  (X+X%0)®+Yj
where I’ve applied the symmetries derived in a). Let
e e ]
T [ X—%0)T+YE  (x+%0)7 +Y3
This is an easy function to plot for various combinations of the position of the original line charge
(Xo, Yo).

c) If we integrate over a strip of width Az, we find, where we use the integral

j-oo 1 _ 1 mE2arctan
0 (XFXo)? +Y3 2 Yo

_ [ L AQ 7 _ =22 tan-1{ Xo
AQ—_“O odxAz Az —IO odx = =24 tan YO)

and the total charge induced on the plane is —oo, as expected.
d)
Expanding



In( 2R2 5 ) —In( 2R2 5 ) —In( 2R2 5 ) + In( 2R2
(X=X0)" + (¥ —Yo) (X=X0)” + (¥ +Yo) (X+X0)” + (Y —Yo) (X+Xo)" + (Y +
to lowest non-vanishing order in Xo, Yo gives
Xy
R

42 Xy
EO (2 +y?)

¢ > Pasym = > YoXo

Thisis the quadrupole contribution.
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3.25
2)

g’a [~ dy B g’a

4 2 = 2 _ A2
e Jr y3(1—§—§) 8reo(rc—as)

W= [ Fidy -
r
Let us compare this to disassemble the charges

a 2 2
_W = 1 g _ 1 ag 1 _ g-a W
8reo ; g% dmeg | T r(l_a_z Areo(r? —a?) g

r2

The reason for this difference is that in the first expression W, the image charge is moving and
changing size, whereas in the second, whereas in the second, they don’t.

b) In this case
= = Qd » (2y*-a%)
w= [ [Fldy = — QY _ s "X 22 4
I,l dy 4reg |:Ir y? 9 I, y(yz_az)Z Y

Using standard integrals, this gives

_ 1[ 9%a _qza_qu]

~ Ameo | 2(r2—a?)  2r?
On the other hand
w1 ag®> qQ+2q) |_ 1 ag> g’a_9Q
47[80 (r2 _a2) r 47[80 (r2 _a2) r2 r

The first two terms are larger than those found in W for the same reason as found in a), whereas the
last term is the same, because Q is fixed on the sphere.
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4. 2.6 We are considering two conducting spheres of radii r and r,, respectively. The charges on

the spheres are Q5 and Q.

a) The process is that you start with ga(1) and gn(1) at the centers of the spheres, and sphere a
then is an equipotential from charge ga(1) but not from gn(1) and vice versa. To correct this we use
the method of images for spheres as discussed in class. This gives the iterative equations given in the
text.

b) ga(1) and q,(1) are determined from the two requirements
B B

> (a(j) = Qaand > ob(j) = Qv

=1 =1
As a program equation, we use a do-loop of the form

' o _ —Talb(—1)
> (o) = 0T

and similar equations for qu(j), Xa(j), Xo(j), da(j),dn(j). The potential outside the spheres is given

I SR () R X))
= > — B > s -
$(X) Are (j=1 |?—xa(j)k| " i1 |Y—db(j)k| )

This potential is constant on the surface of the spheres by construction.
And the force between the spheres is
__1 da(Dab(k)
F= > ,
Aneo "\ [d—Xa(j) - Xo(K)]?
c) Now we take the special case Qs = Qp, ra = rp = R, d = 2R Then we find, using the iteration
equations

by

Xa(j) = Xo(j) = ()

x(1) = 0, X(2) = RI2, X(3) = 2R/3, or x(j) = @R

da(j) = av() = a()

_1n\j+l
ai) = 4 @) = -g/2, q@) = ¢/3, or () = < j)’ q

So,asn- f
B B _1n\j+l
> ai)-a> E——an2-0-q- 1%
j=1 j=1 J n
The force between the spheres is
Fo_1 & (1) _ 1 ¢ DMk
4reg R? ik jk[Z—@— (k—k1> ]2 4req R? ik (+k)?

Evaluating the sum numerically



2 2
F= gz (0.0739) = 1 Q1 (0.0739)

Areo 4reo R? (In2)
Comparing this to the force between the charges located at the centers of the spheres
F 1 Q
P T Areo R

Comparing the two results, we see
F=4

(0.0739)F, = 0.615F,

(In 2)2
On the surface of the sphere
B .
__1 ad __gq 1
¢ = 4reg il R-x() 47rsoR> =1
B

H ]+1

Notice 1+ >= (-1

[y

1 9 __1 Q _Q _ _c _ _
0= Zres DR ~ Fmeg 2ZM2R ~ C  dmegr 22— 1.386
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5. 2.7 The system is described by

Y

VL T T

a) The Green’s function, which vanishes on the surface is obviously

GRY) = =i - =1
X=X  K-X|

where
X =xT+y5+2'k X = xT+y5-7'k
b) There is no free charge distribution, so the potential everywhere is determined by the potential
on the surface. From Eq. (1.44)

400 = A [ pe) BEHD o
Note that A’ is in the —z direction, so

2GR Xy = —LGE)]y0 = 2z
7'=0 az 7'=0 I:(X_Xl)2+(y_y,)2+zz:|3/2

So
Zy a p2r p'dp’dqﬁ'
N [x-x)?+(y—y)2+22]™

where x'=p'cos¢’,y’ = p'sing’.
c) If p =0, orequivalentlyx =y = 0,

b(2) = VII pdpd¢3lzzzvjan—P

[p? +2 0 [p?+22]

- ( z- J@%*+12?%) ) - ( ; )
$(2) = 2V -V 1-—2
zJ/(@%+12?) (@ +12?)

2 p'dp'dg’
VH [B-3)2+22]™

d)




In the integration choose the x —axis parallel to g, then g - p' = pp’ cos¢’

/d /d¢/
VI IO [p? +pp i) p'+7

I Iz” p'dp'dg’
27[ r3 /2 2?) >/ :|3/2
We expand the denominator up to factors of O(1/r 4), ( and change notation

¢~ 0,p > a,r? - ﬁ)
2r
Z adad@

3/2
r2 i|

3/2
]

Letr? = p?2+7%, s0

where the denominator in this notation is written

1
[1+ B2(a? - 2pacosh)]¥?

or, after expanding,

_z V[ (. 3p2.2 2 15 pa 4 _ 15 pa 3 15 p4 2 2 Ane2
) = £ Oadajo (1 3 p2a? + 3p2pacost + 12 pla* - L3 p4a®peost + L3 p4p2a2 cos 0)do
Integrating over 6 giv&s

d(X) = 27r r3j (27r+ 15ﬁ4a47r 3 a2n+%ﬁ4p2a2n)da
Integrating over « yields
(iﬁ“nae - %a“ﬁzn + %a“ﬁ“pzn + naz)

Va? 3 a? 5( a'+3p2a’
~ Vo 1 41_3_ & oSl *opa
o9 2(pz+22)3'2[ 4 i) 8( (p%+22)°

or
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1. 2.8 The system is pictured below

a) Using the known potential for a line charge, the two line charges above give the potential
o(r) = 1 omr - V, aconstant. Let us define V' = 4rgoV
2reo r

Then the above equation can be written

i

2 !/ !/
(rT) —erorr? =r2er

. 5 2372 .
Writing r'2 = (r - R) , the above can be written

2 !
(? +o—R ) _ _Rer
(e7 - 1) (e —1)?

The equation is that of a circle whose center is at -2—F—, and whose radius is a = —£¢*—
ez -1 (exr-1)
b) The geometry of the system is shown in the fugure.

!

d; R
a o
- A
d
Note that
d=R+d1+d2
with
d=—R—, d = —F
and

Forming



2 . 2 v 2
d2-a2-p? = (R+ VR + B ) —(—Be\z/_l ) _(—Re 22 )
erl g7t (e -1) (e -1

Rz(evivb + 1)
d2—a2_p? =

@2 - e -1

or

Thus we can write

() e

e 7 + Vh-V -(Va-v)

d2—a2-p2 _ et ie 7 =COSh(V/ Vi
21

2ab B va Vb 2

or

Va—-Vp _ 1 1 d?2—a?-Db?
A - 27eo cosh ( 2ab )

QL 2 2reg

. . _Q _ _ _
Capacitance/unit length = L~ Va-Ve Va-Vo  codr 1( pr az b2 )

C) Suppose a? << d?, andb? << d?, anda’ = yab, then

C _ ) _ 2ngg
L -1{ d?-a?-p? _1{ d?(1-(a®+b?)/d?)
cosh™ ( 2‘;2 ) cosh 1(;—/2)
d?(1- (a® + b?)/d?) 2meol
-1 _ 0
cosh ( > ==
201 _ (a2 4 h2)/d2 2nsgl
(d d (Za;b )/d*) ) - e2° + negligible termsiif 2”—5’:0" >> 1
or
In d?(1- (a® + b?)/d?) _ 2neolL
a”? C
or
C _ 2reg
L d2(1-(a2+b?)/d?)
In(—/2 )
a
Let us defind a? = (a2 + b?)/d?, then
% = 2reg — 27— _ 4 op a?+ O(a?)

d?(1-a? d? 2 d2
|n(%) |n¥ In PG

Thefirst term of this result agree with problem 1.7, and the second term gives the appropriate
correction asked for.
d) Inthis case, we must take the opposite sign for d? — a2 — b?, sincea? + b? > d?. Thus

C _ 2rgg
L -1( a?+b2-d?
cosh™( 2 2o )

If we use theidentiy, In(x + ¥x? — 1) = cosh™1(x), G.&R., p. 50., thenford = 0



C _ 2reg _ _2ngo

n(5+52-)  In(3)

L
in agreement with problem 1.6.
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2. 2.9 The system is pictured below

a) We have treated this probem in class. We found the charge density induced was
o = 3goEqcoso
We also note the radial force/unit area outward from the surface is 62/2¢o. Thus the force on the
right hand hemisphere is, using x = cos@

_ 1 (25,43 __1 20 o2 [Py - 1 20 24 9 A
Fo= e [o?2- @ 5o (380E0) 2R jox x = 51— (3s0E0) 27 R4 = § meoERR

An equal force acting in the opposite direction would be required to keep the hemispheres from
sparating.

b) Now the charge density is

= 3soE0(x+ L)

= 3g9Epc0sO + Q = 3ggEoX +
o = S0k Ar eo=0 12760EoR?

_ Q
R? 47R?

-1 25 .43 = _1 29 02 ! Q )2
F, = T IG z.dd = T (3e0Eo)*27R on(x+ oo B dx
Thus

_9 2p2 . 1 1 A2
FZ — 471'80E0R + 2QE0+ 32807Z'R2 Q

An equal force acting in the opposite direction would be required to keep the himispheres from
separating.
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3.2.10 Asdone in class we simulate the electric field Eq by two charges at «

o = 3eggEpcoso

a) This charge distribution simulates the given system for cosé > 0. We have treated this probem
in class. The potential is given by

p(X) = —Eo(l - ?—:)rcose
Using
o = _SO%QSlwrface
We have the charge density on the plate to be
Oplate = —80i¢| -0 = gobo| 1 - a
plate az Z= p3

For purposes of plotting, consider % = (1 - %)

X

17

0.8

0.6 ]

0.4

0.2

2 4 x 6 8 10

Oboss = 3€0EgCOSO =

i Oboss
For plotting, we use—22- = cosd



0.8

0.6

0.4

0.2

b)
1
q= 38()E()27l'a2 -“O xdx = 371'80an2

¢) Now we have

_ .84 _—q| (@-a) (d*-a%)
7ot 4”L|a_a|3 a|§+a|3:|

Qind = 27ra2(;—7?) J';|: (d? - a?) 3 (d? — a?) :|dx

— —13 N —1 3
alg-d|” ald+d|

g @1 1 1 1
m 2 Lelde Jare v Jaed

Gina = g8 d___2 = —q GOl
n 2 d d2_a2 m d a2+d2
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4. 2.11 The system is pictured in the following figure:
|

¥
Pt
X
R

a) The potential for a line charge is (see problem 2.3)
__A T
$(r) = 2reg In(-)

Thus for this system

Mo : Mo
ooz ) i

To determine 7’ and R, we need two conditions:

) Asr —» oo, wewant¢ - 0, soz’' = 1.

)§F=b )=¢F=-b )or
n( %= ) = m(55R)

(%) - (55%)

This is an equation for R" with the solution

The same condition we found for a sphere.
b)




rz2+ b _orb cos¢
$() = =Y
47rso r +R 2chos¢

asr — oo
1-2b%cos¢/rR7| ¢ 2 o
¢® - 47r80 [1—2Rcos¢/r ]_47;80 '”[1 r® R)COS¢]
Using
In(1 +x) = x— %xz + %x3 +0(x*)
2 2
o) = —5 = R(b —R?)cos ¢
c)

r24+ 2 _ork cos¢
- e O __t 0
o = ~togrflb =~ 5 '”[ r2+R2 2chos¢ J i
r=

il ot
27b | y? +1-2ycos¢
=[1‘—y2},fory=2,4,gives

y2+1-2ycos ¢
1-y?
y2 +1—2ycos¢

where y = Rib. Plotting o/{ 5=

27b

a(y) =

9(2),9(4) = - 5—4?:os¢’ 17—%5cos¢

0.5 1 15 2 25 3

-0.57]

-1

-1.57]

-2

-2.57]

-3~

d) If the line charges are a distance d apart, then the electric field at = from ¢’ is, using Gauss’s law

7:/

- 2reod

The force on 7 is TLE, ie,

_ 'L _ %L ) _
F= Pnecd Precd’ and the force is attractive.
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1. 2.13 The system is pictured in the following figure:

V &

a) Notice from the figure, ®(p,—¢) = ®(p, ¢); thus from Eq. (2.71) in the text,

B
O(p,§) = a0 + ) anp" cos(ng)
n=1
3n/2
_[ y ®(b,¢) = 2ray = 7V1 + V2 > @y = Vlzvz
—-rl2
Using
3n/2
I / cosmg cosngdp = &pmr
—nl2

Applying this to @, only odd terms m contribute in the sum and

_2Mi-Vy) o gyma
M zmb™ (-1)
Thus
2(VL - V. impmelm
(p.g) - VpVe 2N ZVe) iy 57 D02
modd
Using
xm (1+Xx) ]
22 X+ = In[ %
modd
and
Im In(A+iB) = tan"}(B/A)
we get
_ 2L cos
a(p,¢) = Ype L) tanl(—“ i )
(1-%)
as desired.
b)

o= —SO%Q(MM



o - g Vi=V2) o tanl( 2 cos¢ )
T 0 p?
P (1-%) /.
b2 + p2

—2b%p? + p* + 4p2b? cos?¢

V1 Vi -Vs

o = ~2% rbcosé

-V
—=2b(cos¢) b lp-b = —€0
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2. 2.22

a) Using the fact that for the interior problem, the normal derivative is
outward, rather than inward, we have the potenial given by the negative of Eq.

(2.21), which takes the form, when § =0 and y = ¢’

\% 2 _ 2 9 1
B(z) = — G 7r/ 1 —_— 1 o | do
4w o \(a®+ 22 —2azx) (a2 + 22 + 2azz)

The integral yields

where I've replaced cos @’ by z in the integral.
2_ 2
d(z) = Val,_ (@2-2)
z ava? + 22
Va [322 7\ 2 6
<I>(z) = 7 [5; + <_§> ? +0 (Z ):|

which agrees with Eq. (2.27) if cos6 = 1.
b) For z > a, we have, using Eq. (2.22)

0 (22 — a?) Va? a?

For |z| < a,

0 Va a? — 22 V([ a® 3a®+a®/2?

B—-2Veli @) g V(.2 /z
0z z avaZ + 22 a 22 (a2 + 22)3

in agreement with the book. Expanding the second form in a Taylor series

exapansion about z = 0 gives

3. 921V , 55V
E,=—- 21V 9 00V 4 6
2’ T e et TOE)

which shows E,(0) = —2-V, as required. Also, from the second form
1%
E.(a) = —— (-1+v2)

From the first form, on the outside, we get

a

E,(a)



c) First look at a plot of the field lines:

Electvin Feld L et

Next, look at E (z) in the region (-2a, 2a). I will make the plot in units of

B(z) = ﬁ (3 + ;—2)
B(z)




0.5

-08 -06 -04 -02

02 04206 08

0

-0.5 7]

-0.5 ]

0.5
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2. 2.23 The system is pictured in the following figure:

Z

A e

g \\-ya ¥

xﬂ

a) As suggested in the text and in class, we will superpose solutions of the form (2.56) for the two
sides with V(x,y,z) = V.
1) First consider the side V(x,y,a) = z :

®1(xY,2) = i Anmsin(anX) sin(Bmy) sinh(y nm2)

n,m=1
withapn = 2, Bm = 2, yom = L4n? + m?. Projecting out Ay using the orthogonality of the
sine functions,

16V
sinh(y nma)nms 2
where both n, and mare odd. (Later we willusen =2p+1, m=2q+1)
2) In order to express @ (X, Y, 2) in a form like the above, we make the coordinate transformation

X =y,y=x27=-z+a

Anm =

So
(I)Z(X!yiz) = (I)l(xl!ylizl) = (Dl(y,X,: Z+a)

DX, y,2) = D1(X,Y,2) + D2(XY,2)
b)

pa,aay_16-V - (=P
2'2'2 n? L= (2p+1)(29+1)cosh(ym2)
where | have used the identity
. B . Y nm@ Y nm@
sinh(ynma) = Zsmh(T)cosh( )

2
Letf(p,q) =Y. C
P PO (2p+1)(2q+1) cosh( J(2p+D)?+(20+1)7 £ )




P9  f(p.a) Error Sum

0,0 0213484 44% .214384

1,0 -0.004641 2.13% 0.20974

0,1 -0.004641 0.013% 0.20510

1,1 0.0002835 0.015% 0.20539
Thefirst three terms give an accuracy of 3 significant figures.

o(2,2,8)- %v = 0.33296V
Oa(3,2,2) - 2v=-033..V
c)
o(X,Y,a) = —80%%:3
o(x,y,a) = — 15‘20 \Y;
- 15‘20 \Y i sin(anx)sin(ﬁmy)[ (CO::&;”‘”:;)_ 1 ]

n,modd

o(x,y,a) = —%V Z sin(anx)sin(ﬁmy)tanh(y”Tma)

n,modd
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3. 3.1 The system is pictured in the following figure:

Z

| ; P, (X)dx
The problem is symmetric around the z axis so

(r.0) = D _(Ar' +Bir-1)Pi(cos0)
|

The A and B, are determined by the conditions
1)
! __2 [ -I-1
_[_1 d(a,x)P (x)dx = o1 (Ala +Bia™ ™)
2)
! __2 [ -I-1
I_l #(b,x)P;(x)dx = ] (Alb" + Bb™ )
Solving these two equations gives

1 1
A = b 8 ] a5 [ ab0m ok

B = al+1% J‘l ¢(a, X)PI (x)dx—A|a2'+1
-1
Using
1 1
I ¢(a,x)P(x)dx = V j P (x)dx
-1 0

1 0 1
j #(b, )P, (x)dx = V j Pi(¥)dx = V(~1)' j Py (X)dx
-1 -1 0
So

1
Al = ety VI - b)) [ Prood

1
B -t 2Ly [ pi(odx— At
0



Note that
1 1 1
_[ P (xX)dx = > _[ Py (x)dx
0 -1
forl even. Forevenl >0, j ; Pi(x)dx = 0. Thus we have

J ; Po(ic = 1; | : Pi(odx = 1, | : Ps(x)dx = —L

8
and
V 3 2 2 7 4 4
A=Y A =—3 v N S
0= M @) V@ ) A = gy Ty V@ D
— Lva_dy,—
By = 2Va 2Va 0
342 3 2, h2\a3 _ 3\va2n2_b+a
By = 3a?V-—3 _V = Sva2p2—Rta
1 4a 1@ -0 (@ +b%)a 7} a‘b S
Y APV | Y SRR v 2V VIS R AR VIV IV LIS -\
B; = 16aV a( 16(a7—b7)v(a +b)) 16Vab b

As b - oo, only the B, terms (and Ap) survive. Thus using the general expression for j ; Py (x)dx
given by (3.26)

6(1,0) = ¥ Po00 + 8Py - ZEPy00 +..... |

Let’s now solve the problem neglecting the outer sphere (since b — o) using the Green’s function
result
(2.19) this integral give, for cosf = 1

- V_,2 1 1
¢(r,0) 5> (1 P)[(l_p) (1+p2)]

with p = a/r. Expanding the above,
_V/ia,3a 1a }
o(r,0) = Z[V +2 7 g +oont.
Comparing with our previous solution with x = 1, we see the Green’s function solution differs by
having a B, term and by not having an Ao term. All the other higher power terms agree in the series.
This difference is due to having a potential at o in the original problem.
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1. 3.2 The charge distribution is shown by

a) We see the charge distribution is given by
p () = NO(cos a — cos 0)6(r — a)

where N is determined by the requirement [ d3rp (7) = Q, or

_Q
p(F) = s f(cosa — cos 0)6(r — R)
Expanding 6(cos a — cos ) in terms of Legendre polynomials,

f(cosa — cosf) = Z A Py(cosb)
1

or 2l + 1 COS &
A= —— P(z)dz
2 Ja
Using Mathematica 4, I get
COS &
P11 (cosa) — P_1(cos a)
P(z)dx =
/_ ) () 20+ 1

Notice for [ = 0 in the above, P_;(cosa) = —1.

_ Pi(cosa) — P_q(cos )
B 2

Ay

This problem has azimuthal symmetry, so we can write in general (when
r < R)

o(7) = Z Byt Py(cos )
!



where now 6 is the polar angle of the vector 7. Choosing 7 || 2,
=rz) =Y Bir'P(1)
!

On the other hand we can write

R)

(7= 12) = 1 Z Pyi(cosa) —

dreg 471'R2 2 |7 — |

I Q Pi1(cosa) — P_1(cos ) r'R? /
= P (x)Py
Ameg 4 R2 2”; P) RI+1 dz P (z)Py(z)

Using ', dzPj(2) Py (z) = 525 6m

2l+1

Z Piyi(cosa) — P_y(cosa) !

20+ 1 RAH1

H(F=r2)

471'6 0

Then for general directions of 7,

l

ZPH_l cosa) — P_i(cosa) r
47‘('60 2

20+ 1 g Fi(cost)

If 7is on the outside, we know that R and r are interchanged in the expansion

Pyii(cosa) — P_q(cosa) R
o(r) = 47r€ 2 Z 20+ 1 e Fi(cosd)

b) By symmetry, at the origin the electric field is along 2.

B(0) = —-6(0)2 =

— 3 0 1 Q(P(cosa)— Ry(cosa)) 2z + terms that vanish

Bz 4Ameg 2 3R2
E(0) = _Q (1 — Py(cosa))
127T60R2

c) Consider the case where « is very small. Using our general expression
for ¢(7), we see we need to expand Pj41(cosa) — P,_1(cos ). (I will keep the
leading terms.)

P(eose) = 3 Sy A@lees (o = 1)" % R + o A@leas(o 1)

((x—l)z\/1—62—1)2—%624-0(84)

P,_;(cosa) / dod cos Or'?dr' Py(cos 0)§(r' —



where € = sin a.

1d
Pcosa)=1— 553(1)52
e (d d e2(21+1) (1
Pi(cosa) — P_1(cosa) = 5 <%Pl_l(1) _ %Pl-u(l)) _ ( : ) P(1)

where I have used Eq. (3.28) and these formulas apply for [ > 0.
So

Q 1 Qe rt Q 1 Qe?
= - Py(cos
) = TreoR  Tneg 4 ZRlH Weost) = 72 R " dmeo 4|R5 — 7

That is, the potential is just that of a uniformly charged sphere plus a point

charge _ Q(solld angle subtended by empty cap) located at the pOlIlt Rs.
The electric field for this pomt charge is 0bv1ous1y given by

—1 Qe? (7 — R2)

E(f) =
= tres 4|Rz — i

If the charge were located on a small cap at the bottom of the sphere, ie, if
a — 7w — (3, then clearly in analogy with what we have already done, we can see
that it would act like a point charge = (Q &olid anele SUbtended by cap)

and located at the point —RZ. Then the potentlal is

1 Qe?
) = fres TRE 7

where now € = sin g.

1 Qe (7+ R2)

E() =
") = Tres 4Rz +7P
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2. 3.3 The system is described by

-
4
—

X

a) We will calculate the potential when the field point is along the z— axis,
then generalize to any Z.

1 R _opldp’ odp
7 frd 5 fd —2
(,25(:1: zz) 4meg g 0 52 +p'2 250 \/RQ _p/2 \/22 +p'2
—_ t —_
260 an ( z )

_ c
where I actually mean the absolute value of z here, and where o = T

If 2 =0, then ¢ = V, 50 (§€7) =V, or € = 42X Now if 2 > R

2
o= v tan—l(ﬁ)
™ z
Now R ) 1 )
-1 _ 3 5 7

which we generalize

o = 2n+1\ 2
But in general

N (%)mﬂu)

l



Thus [ = 2n, and in general

2V & (=) R\
¢ = — Z o= +) - <7> Py, (cosB)
n=0

b)If r < R,

o(Z) = i AyrtPy(cos 8)

=0

At r = R, the two forms should be equal, so

2V (—1)"
AR ="~ "7
R T 2n+1

with | = 2n, as before.

o= 2 5 L (5" o
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4. 3.4 Slice the sphere equally by n planes slicing through the z axis, subtending angle A¢ about
this axis with the surface of each slice of the pie alternating as +V.

¢(r!0!¢) = > A|mr|Y|m(01¢)

I,m

SO
Am = 2 [ dAYT0,9))"9(@.0.)
Symmetries:
Ai-m = (—1)m(Alm)*
¢(r.0,¢ +2A¢) = ¢(r,0,9)
where
A = %
Thus
m = +n, and integral multiples thereof
¢(_?) = _¢(?)! n=1
$(-T) = ¢(r), n> 1
Since
PYIm(G!(b) = (_1)IYIm(0!¢)
Then

lisodd forn =1; lisevenforn>1
Thus we only have contributions of | > n. Using

Am = 2 [ dAYT0,9))"9(@.0.9)

The integral over ¢ can be done trivially, since the integrand is just '™ leaving the desired answer
in terms of an integral over cosé.

n = 1 case: | am going to keep only the lowest novanishing terms, involving A;; and Az_;.

¢ = r(AllY% +A1_1Y11) = r(AllY% + (AllY%)*) =2r Re(AllY%)

vl — _\/%(1 _ x2)12gid
Au = -1 ‘/%v[j:(l =ty [ [T ettp - [ el |



_ 2r | 3 _ 3 Gnoeid | | = 3 venga
0] 2rRe[( a | Br V)( B snfe )} ZaVsneanﬁ

From the figure

) 9,\
s B

we see
sinfsing = coso’
So

_ 3 r_y[3L /
¢ = S-Vcoso v[ 3 LPi(cost) +..... }
The other terms, for | = 2,3, can be obtained in the same way in agreement with the result of
(3.36)
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3. 3.6 The system is described by

0
2| ™\,

-
X

a) From the figure, we can write

W~ q 1
@) = ey [|E—6| |f+a|]

And using the familiar expansion of |5£a , this expression can be written

l
6@ =73 (52) 1AO) - n — o)
1 >

e s

 4meg >

!
- q L (r
6@ =7 3 - () 1+ 1) o)
1
This can be written in terms of spherical harmonics using P;(0) = | /5757 Y,°(0, ¢).

b) We are given r > a, so

l
6(%) = 1 Zi(ré) (1+ (=1)"*1) A(6)
l

:47r50 s \T>
6@ = 2= 32 (2) (14 (1)) R@sa— 0= 222 Pi(o)
dmeg <1 \T ’ Amegr?
. Dpcosf
¢(x)_47r60r2



c) The electric dipole is the particular solution, and ¢, is the homogeneous
solution which is a solution to Laplace’s equation: by superposition,

¢(f)=¢p+¢0

_ pcosf
 Amegr?

¢ (2) +ZAH"IPZ(9)
]

The boundary condition we must satisfy is that ¢ (|Z| =b) =0, so

pcosf I
A P(0) =
4megb? +; W F(0) =0
0, 1#1
— A} =
: _47r50b3’ l=1

. pcost 1 r
¢(@) = dreg <r2 b3)
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2. 3.7

a) We first work the problem in the absence of the sphere, using the

superposition principle,

1 2 1

O~ G e T

We know . .
r

Fram g () Ao

where 7., 7« are the larger, smaller of a, r respectively and #-(£2) = £ cos 6.
Since P;(—cos ) = (—1)'P;(cos 6)
(Z) = Z ( ( <>l 6l0>Pl(cos0)
47r€0 = T

Asa — 0,
@) 47r50 Z ( (a>l 57€0) P, (cos ) — 472353; ) — 27r§()r3 Py(cos9)

b) We can write the general solution as the sum of a particular and

homogeneous part ¢ = ¢, + ¢y, where V2¢p

—p/eo and V¢, = 0. Clearly,

we can take as ¢, the solution of part a) and choose ¢, to satisfy the BC’s.
The non-trivial solution is in the region r < b, where ¢, = >, 47! P(cosf). At

r = b, we must have

(¢p + ¢0) |r=b =0

thus
A =
l.r>a
o4
(15(.’13) - 27['60 Z
_l even
2.r<a
- 4
_l even

47!'60 Z

l even

(

1

r

< (a)l 510)Pl(cos9 +ZAlblPl(cos9)

0

1

__a
b2I+T 27,

-

G

)’_

y

b0
r

_Sw
T

% )

)
)

l odd

l even, > 0

>

! even,>0

p

l even,>0

al

2l

al

P21

~

~

P, (cos9)

Py (cosb)



As a — 0, the potential is dominated by the lowest non-vanishing term of
expression 1.:

$(@) = — (a—2 - “—2r2> P (cos )

T 2meg \ 3 B
.__Q r?
= 1—-— | P
(@) 2meqr3 )2 (cos 6)
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2. 3.10 This problem is described by

z
// B V
F \—_—/
L
T
+ [ TN
[ y

a) From the class notes
; n )
(p,2.¢) = Y (Ansinve +Bp, cos\/¢)|v(%) sm( N2z )

nv

where
21 [ oAy
Any = I, (o _[0 _[0 V(9,2 sin(==) sin(vg)dgdz V30
_2_ 1 (v . nza
Bnv = 7L 7, (02 _[0 _[0 V(¢,2) sin( L ) cos(ve)dedz, v ®0
_L# L p27 . nra -
B = L |, (b .“0 -“0 V(¢’Z)Sm( L )d¢dZ, v=20
V( L )
Noting

e

D?’f sinv¢d¢—j‘fn sinv¢d¢} =0

2
we conclude A,, = 0. Similarly, noting

e

[F_ Cosv¢d¢—ffﬁ COquﬁdqﬁJ = g(r;i)rln m=0,12,....

where I’ve recognized that v must be odd, ie, v = 2m+ 1. Also

L
ine NIZ _ 2 _
jo sin(2)dz = b, 120,12,
where again I’ve recognized that n must be odd, ie, n = 2l + 1. Thus
B _ 16(-1)"V
nv —

2 ome (22) (21 + 1)(2m+ 1)
b) Nowz = L/2, L 33 b, L 33} p. Then from the class notes



Lo (BALIL L [ @+ Drp ]mﬂ

Tm+2) 20
Also
Sn|:(2|++)n:| — (_1)I
SO
D(p,z,¢) = Z 16(-1H"mv (ﬂ) 2m+1 cog(2m+ 1]
PeP T R DemT 1) \b
Using
tan~1® = I ﬁzrll (_1)I
)
. (—1)!
FRARCORDIE
-0
SO

wzo- ¥ T

(£) ™ cosi(2m+ 1)¢ ]

Remembering from problem 2.13 that

S ()™ cosiam+ 1) - %tanl[%g?}
b2

m

we find

Pl
O(p,z,¢) = %tml[m :|

(1-%)

which isthe answer for problem 2.13.
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1. 3.12 The system is described by

a) From Eq. (3.106)
D(p,p,2) = i /oo dke™** J, (kp) [Am (K) sinme + By, (k) cosmg)
m=0"0

where from Eq. (3.109),

g:gllg} - %/000 dpp/02"d¢v (0, 9) Jm(kp){sinm¢

cos meo

where we use %BO for m =0.
b) Using cylidrical coordinates, with the origin at the center of the disc, then
we have p = 0, and can use the small argument expansion for J,,(kp)

T (D) pmo = 1% +O((kp)?) = bmo

1 oo
®(0,¢,2) = 5 / dke™** By (k)
0
And, using Mathematica 4,
Bo(k) = 2KV / dppTo(kp) = 2KV . Jy(ka) = 2V ey (ka)
0

Thus, again using Mathematica 4,

o0 Vz24+a?2 -2z ( z )
®(0,6,2) =Va | dke e Jy(ka) =VELIE 2 _y (1o 2 __
0.6:2)=Va [ ke tha) = VT N

c¢) We notice that for this V(p, ¢), which is independent of ¢, that all A, (k)
vanish, and that only By is nonzero. Again

Bo(k) = 2KV / dppTo(kp) = 2KV . Jy(ka) = 2V ey (ka)
0

®(a,¢,2) =Va / b dke™** Jo(ka)J1 (ka)
0



Using Mathematic 4,
*© 1 zk
dke™ % Jo(k ka)=— (1- Z=K(k
| ke ey o) = 5 (1- 2ok

where k = ﬁ, and the complete elliptic integral of the first kind is

defined by
/2
K(k):/ __ de
0 1—k2sin?
Thus v )
z
) == (1-Z2K(&
(@.6.5) =5 (1- 2ok (0))
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3.4.1
¥
-q
_qt % y
q
q
X
Gim = [ PP (0, 9)pR)d = > qir | Y™ (01, 1)
Using

Y™ (0.9) = J(2'4;(ﬁ)£' ST PIOOE™ = NPPPOOe ™

From the figure we get
qm = a'N"P™(0)q[(1 - (-1)™)(1 —i™)] = 0, formeven,som=2n+1,n=0,1,2,...
dim = 20a'N"P(0)[(1 - (=1)")]
b) The figure for this system is

Since the sum of the charges equals zero, | > 1.
Qm = qa'[Y™(x = 1,¢) + Y™ (x = -1,4)] = ga'N["[P"(1) + P"(-1)]
From the Rodrigues formula for P"(x), we see P"(¥1) = 0, for m = 0. So
qm = ga'NP[1 + (-1)'1Pi(1)
Thus | iseven, but| = 0



Gim = 20a'NP
¢) Using the fact that N{ = /2= and YP = /2L Py

P(x) _ 2ga
i+l ~ r3

B
O(X) = > (2ga)

=2

P2(x = 0 on x-y plane)

aZ
@(;O = —qr—3
Let us plot ®(X)/(-g/a), ie, ﬁ ==
o
-]
6]
5]
o]
2]
,]
L
005 1 15 5 2 25 3
The exact answer on the x-y plane is
9 2__ 2 | _Z9((1)_3(1Y,.5(1Y _
OX) = 7| % T _a((X) 7 (%) +3(%)
X [1+ v
So let’splot X+, 2 — —2
P X3 X x/l+xi2
03]
0.25 7
0.2
0.15
0.1
0.05
0 2 2 4 5

where the smaller is the exact answer.
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2. 4.2 We want to show that we can obtain the potential and potential energy of an elementary
diplole:

- X
®X) = 471:!-80 pr3
W = —B - E(0)
from the general formulas
IPC )d3
47rso

W = j PRDF) X

using the effective charge density

—

per = —P + V6(X)
where 1’ve chosen the origin to be at Xo.

p Vl&&/)dsxl _ 1 A. _' 1 INA3/
47rso.“ X-X| B 47rsop IV X-X| S(X)d*

Similarly,
W = j PRDF) X = — j B VoROR X = B - j SFVORxX = —p - E(0)
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2. 4.6
a) We know that

1 0
5 Z Qu%Ez(O)

The problem is cylindrically symmetric, so Q11 = Q22- Using the fact that
the trace of the quadrupole tensor is zero, we see

Qi1 =Qx2 = —%Qsa

The book defines the quadrupole moment in nucleii to be @ = %Q33. The
electric field in our formula for W' refers to the external electric field, so within
the nucleus V- E =0, or

0 0 0
—E,+—FE,=——E,
ox + Oy 0z

Q0 (D Dp\) _ @D, 1( D
W= 6 <8ZEZ 2<6$EZ+6yEy))O_ 6 <6ZEZ 2( 6zE2)>0
_eQ (0 1 0
V=% (azE")o<”2> i (a )

() 2 )
9z 7 ), eQ eQ (47”_:0“ dreoad

Now from the particle data book,

e? ahce
= = — i h = 1 1
po— ahc o with o = 1/137
So
AW A(W/h)2ma  4-107sec™27 (0.529 x 10710)°m® 0,085
Q ( e ) B Qac ~ 2x1072m2(1/137) x 3 x 108m/sec
4meoal

0 e
(gEz)o = —0.085 (rm)ag)

c) Let us assume the spheroid is gotten by a rotation about the semimajor
axis. The equation for a spheroid is given by
2, .2 2
u + Z_ =1
b2 a?



The volume of the spheroid is

27 1 p2/b2 4
V= / d¢/ pdp/ = T ap?
—a 1 p2 /b2 3
where p? = z2 + 2.
Thus the charge density of the nucleus is

_ 3Ze
pc_47rab2
V1=p2/b2
Q33—p627r/ pdp/ (22° — p?) dz
_a 1 p2/b2
b 272 2.2 272 2 (.2 2
B 2 b2 — p?)\ 2a°b* — 2a%p* — 3p?b B 4ab? (a® — b?)
st—pc27r/0p<§a ( = ) = dp = p2r———
3Ze 4ab? (a2 - 2
— A 2 _ 12
Qa3 (4mb2>27r 15 57¢(a” =t
So
2., o A4 4
Q=:7(a*~t?) =2Z(a—b)(a+b) /2= =ZR(a~b)
Or

(a=b) _ 5Q _ 5-25x107%w’ _
R 4ZR%*  4.63- (7 x 10-15)* m2 :
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3. 4.7 a) Since p does not depend on ¢, we can write it in terms of spherical harmonics with
m = 0. First note
- [5 (3¢1_sin20) - L1
Yy = /47r (2(1 sin“g) 2)

in2g = _2 |4 2
sin?0 = —£ | <2 Y2+J4_3Y°
Thus only the m = 0,1 = 0,2 multipoles contribute.

2 [ (e Jo - 2

or

3 8rn 27

G0 = = 3FI r*(Gapreer)ar - -3 22:‘3%

Y0
DO(X) = L[“'ﬂqOOTO +4m020 5Yr83 :| -1 [mqwﬁ + “2F Gao }:e? :|

dreg dreg

__1 [Po_ ﬂ}
(%) 47rso[ r

r3

Joo =

b)

I pF )d3

47rso
Using

1 1 «

,weseeonlythel =0,2andm =0 terms of the expansion contribute in the potential. Next take
r'>r.

(2&1) FYIO.9) [ Y (O, ¢')r 2y Pﬂl) dr’

B ( FI 6 re—)%df”
oo e (4 ek

3

27
_ 1 2.3 P2 2 _1ﬂ_r2Pz]
®®‘4nso4’{P33 5 (3)647r:|_47r80|:4 120

O = 47r

D) = 4738047{Y8\/_%j‘ (61 re‘)rdr+
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4.4.9 a) The system is described by

= d
A q

Since there is azimuthal symmetry, choosing the z-axis through g,

- (DA £ T ()R

1) Doyt = (Dinlr=a, or
BI — A|a2l+1
2) Sé\i\rq)in = é%q)OUtlha, or |ett|ng k = %

k[IZwa'-lR ; %l(%)m J _ |:Z—(I L DBa2P, + %l(%)m J

= |:Z—(I +DAAP + %I (%)R J

or
_ a(l -kl
A @l 1de
g _ _ad-kla

[(L+Kk)l+1]d"?
Remember that P, = 5‘_%1 Y?, and substitute the above coefficients into the expansion to get the
answer requested by the problem.
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3.4.10 The system is described by

a) Since there is azimutal symmetry,

o(r,0) = Y (Ar' + Bir"1)P(cosf)
|
Also

D = c(R)E = —eX)V(r,0)
Dy = —&(X) D_(IAr't — (I + 1)Bir-2)P(cos0)
|

between the spheres,
_[ D,dQr2 = Q, and is independent of r.

Thus
A =0, Blzo,lmoaor:@
0 1
IDrerZ - 27rBo(go_[ 1dcos@+sj dcose) = 27Bo(go +¢) = Q
- 0
Q9
271'80(1+ %)
Eo__Q
2reo(l+ & )r?
b)

jD,dA = D/A = 6{A - o1 = Dy = s)E

eQ
= , cosf >0
71T 2nee(l+ = )12




Q

= =, cosf < 0
7T 2@ 22
c)
[ PV = oA = [V -PdV = —PA = 60 = P = —zoycE
= —(eX/epg =1 L
R =2
Notice

Q

m = goE, asexpected
%0

Opol +Of = Otot =
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1.5.1 The system is described by

5 P
r
f
x Y
djl‘
We want to show
_ _tol
Om = Ar Q

Suppose the observation point is moved by a displacement 5X, or equivlently that the loop is
displaced by -oX.
If we are to have B = —V¢,, then

6¢m:— X-%
Using the law of Biot and Savart,
5¢m:‘ﬁ_3rl§ﬁ' (d|’r3xr ﬂ0,§ (fxdl ) “0, §r (yxdl)

Spm = “0' ¢ - S(dA) ﬁjr' 50

Or,

_ _ Mol
Om = 47rQ
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2.5.2.a) The system is described by

i
Z |
[/] Z p
¥ X £
First consider a point at the axis of the solenoid at point zy. Using the results of problem 5.1,
— Ho
dpm = s NIdzQ2

From the figure,

Q:j‘f-dﬂz dAcosezznzj‘R pdp 5 |z 4
r* r* 0 (p?+22)* R+ 7)

_ Mo b _ 1 1 Ho _ 2 2
Odm = 2NIJ‘ZOZ( —(R2+22) +Z)dz 2NI( z+ (R +zo))

2 2
oD (. — o -Z0+ J(R°+Z5)
B, = 2N|azo(z0+,/(R +B) ) = N

In the limitzg - 0

By symmetry, thej loops to the left of z, give the same contribution, so

B =B +B = uoNI

H=NI
By symmetry, B is directed along the z axis, so
Spm=-0p-B=0
if 5p is directed 1 to the zaxis. Thus for a given z, ¢, is independent of p, and consequently
H = NI

everywhere within the solenoid.



If you are on the outside of the solenoid at position zp, by symmetry the magnetic field must bein
the z direction. Thus using the above argument, ¢, must not depend on p.  Set ustake p far away
from the axis of the solenoid, so that we can replace the loops by e ementary dipoles m directed along
the zaxis. Thusfor any point z, we will have a contributions

¢ma(m-r1 N m-rz)

ri r3

wherem 7, = —-m-ry,andr; = ro. Thus

H=0
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1. 5.3 The system is described by

¥

L
The law of Biot and Savart says
o Tdl X 7
dr 12

dB =
From the figure, for one loop
_ o 2masin®  p, I27sin® 6

B, = =
471' d? A7 a
As NL — 00, dN = Ndz,butg—z - %7(‘1: ﬁ?so dN = Nsi"ffe
—0; IN
Buior = / B.dN = e 12n sin 0d9 = 22— [cos 0 — cos (m — 01)
7r 05

toI N

Biot = [cos O5 + cos 64]
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2. 5.6 We may choose the coordinate system so the currents and hole are aligned as

_]?

Here, I’m taking the z axis as out of the paper. Then, applying the superposition principle, we can replace
this system by one where a current .J fills the whole wire and is in the z direction, while an opposite current J' = —.J
flows in a wire the size of the hole and is located where the hole previously was.

From Ampere’s law we can work out the magnitude of the magnetic flux density

/B-dfzuo/j-dﬁzﬂoJWTQ23277'7“—>B:MOTJT
Similarly
B/ — /‘LOJTI
2
Putting in the directions
E _ /J/OJQ X7
2
and N
B’/ _ MOJ(_Z) xr
= =5 = JZ X (F—7
BtOt:B_'_BI:p’O 2( )

However, from the figure, 7 = d + 7, so

Thus we conclude the magnetic flux density in the hole is a constant, B;,; = ﬂQ‘Ld, and it is directed in the y
direction.
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3. 5.8 Using the same arguments that lead to Eq. (5.35), we can write

A — &"- d3x cos¢'Jy(r',0")
¢ 4 R_?ll

Choose X in the x — z plane. Then we use the expansion

1 _ 4 rl (0! 4/
R_?ll _|> 2|_7:1 r|+1Y|m(01¢)Ylm(010)
m >

The cos ¢’ factor leads to only an m = 1 contribution in the expansion. Using

Y7'(0,0) = J 2+l E: 123: P["(cos0)

and % - ﬁ we have on the inside

Pl(cos0')J,(r',0")

Ay = Eo > 1 r'Pﬁ(cosG)Id3x’ T
|

4r [(1+1)

which can be written

A; = —2‘—7‘;>| mir' P} (cos6)

with

1 s PH(c0s0)J,(r',0")
A T(I J e [

A similar expression can be written on the outside by redefiningr. and r..
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1.5.10
a) From Eq. (5.35)

2dr'dQ"sin@' cos ¢'5(cosO)o(r' — a)

X=X

r
A1) = £24 |

Using the expansion of 1/[X — X'| given by Eq. (3.149),

B
iy = [ dkeosiiia- z’)]{%lo(kpaKo(kp» +> cos[m(p - <p’>]lm(kp<>Km(kp>>}

m=1

We orient the coordinate system so ¢ = 0, and because of the cose’ factor, m = 1. Thus,

B .
Ay(r,0) = 2‘—;%47” jo ok [ r2dr'dcos6 sing'5(cos0)3(r' - a) cos(kz)l 1 (kp K (Kp-)

p
As(r,0) = £2al j  dkeos(k2)l1(kp K (kp-)
where p.(p-) is the smaller (larger) of aand p.

b) From problem 3.16 b),

B
B ; ’
i = > [ e Itk e
m=—p 0

Note Z = 0, and ¢ = 0, so

B
A = “OT'a [ * dke 13, (p)3s (ka)
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3. 5.13 We may choose the coordinate system so the 7 lies in the x — z plane:

-
4

r
\5 ¥
r
X
The vector potential is given by
= e [ Jda
A=—
w ) |F—7|
Noting Jd3z' — AIdl’, where
270y
A — % _oa dQ2
T 2 Jw

dl =a |sin ¢’ | o'

Since

Al

¢ =cos¢d') —sing's

By symmetry, the z-component of A vanishes, so

in ¢’ 'dQY
_ ﬂawa:;/sm cos ¢

T Arw |7 — 7|

Y0, ¢') = -/ si sin @' ™™’
Us

A,y

where I've used



W 1 /8w (Y11 (0/5 ¢/) + Yl*l(el, ¢/))dQl
Ay = growa’ <_§\/;> / 7= 7]

1 47

l,m

and the fact that Y;™(6,0) is real, we see only the [ = 1, m = 1 terms
contribute.

Lo 3 [87\ dmre 4 Bo  g4mre .
A, = Gl (— ?> ?EYI (6,0) = 10 ?ESIHQ

If we take 7 to be in an arbitrary direction 4, — Ag. Also, noting Q = 4ma?,

_ Ho Quwa rc inf

¢_47r 3 7"%

Thus on the
inside: 0
Ho GWT .
Ay = ———sinfb
¢ 4T 3 a st
outside:

P

Remembering for this case

2
A, = o Qua sin 0

— = - ]. 8 A ]- a
B = A=+ — (sinfA ———(rA
VX " |7 sing 90 (siné ¢)]+0[ r or (r ¢)}
Thus on the
inside: .
_&@2cos9 B __@%2s1n0
"T4r 3 a T T3 a
outside:
_@@LL@COSO B _@%aﬁsinﬁ
" 4Ar 3 r3 O~ 43 3
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4. 5.14 This problem corresponds to J= 0, so we have the equations

— —

V-B=0, andVxH=0
from which it follow that
H=-Vo
where B = ,uﬁ . From the first two equations we have the boundary
conditions at an interface:

Biy = B2y, and Hy|| = Hy

From the discussion on p. 76 of the text, the potential is independent of z
and can be expanded as

®(p,¢) = Z [Amp™ + Brp™™] (Crm sinme + Dy, cos me)

m

Because the system is odd under reflection through the y axis, which I take
to be along By, there are no cosine terms in_‘the expansion. In the region III,
outside the cylinder, as p — 00, —V® = H = Hyy. Thus @751 — —Hpy =
—Hypsin ¢. Here Hy = By/ 4. The boundary conditions can be satisfied if only
the m = 1 terms are kept in the expansion, and we know that the solution which
satisfies the boundary conditions is unique. Thus we have the expansions

Region I, p < a:

& = Apsing

Region I, a < p < b.
@ =[Cp+ Dp_l} sin ¢
Region III, b < p.
D1 = —Hppsing + Ep_1 sin ¢
Applying the boundary conditions, we have the four conditions

®1lp=a = Pr11lp=a

0 0
Noa_pq)l|p=a = Na_pq>11|p=a

@irlp=b = Prr1|p=p

0 0
% 9p 11| p=b = Mo ap 111| p=b



These four boundary conditions allow us to solve for A,C, D, and E, with
the result that

- 4H0b2[1,7.
N d
2
C = 2Hob ([llr + 1)
d
D= 2H0(,ulrd— 1)&2b2

_ Hob? [2(p, + 1)b 4 2(u, — 1)a® + d
N d

A

where

d= az(:ur - 1)2 - b2(:ur + 1)2
and the relative permealbility is

Hzﬁ
" Ho

With these expressions _
By = —pogVe;
Brr = —pVoy;
Brir = —poV®rrr
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4.5.16 a) The system is shown in the figure

I shall use the magnetic potential approach and will call inside the sphere region 1 and outside the
sphere region 2.

¢1 = ¢Ioop+> AI"IPI
|

¢2 = ¢Ioop + > BIr_l_lpl
|

where H = —_V'qﬁ, and we have the boundary conditions,

Hy = Hy = ¢1(r = b) = ¢2(r = b)

Ho-L-ga(r = b) = u-L-go(r = b)

We are given that b >> a, so

_ _1 mcos6
¢Ioop— 471' rz

with m = za?l. (From the form of ¢, ONly the | = 1 term contributes.) The boundary
conditions give

A1b1 = Blb_l_1
21om 2um 3
_ oM - —2uBib
4zp® O anp® M

So

2 m (U—po)
A = Ji
YT T 4n b3 (2u+ o)




Ontheinside, at the center of the loop
From Eq. (5.40), we are given —_V'¢|oop at the center of the loop, which is directed in the z direction.
H, = 2 (-B0) - As

If u>> uo

and from (5.40), atr = 0
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2.5.18
a) From the results of Problem 5.17, we can replace the problem stated by the system

" I

where 1* is equidistant from the interface and is equal to I * = Z:—jl. The radius of each current
loop is a. Now from Eq. (5.7)

Flonl) = |dex B()

d'x B =dl x B, +dl x By = diB, (-§) +dIB,f

By symmetry, only the z— component survives, so, from the figure

(de E;) - dIBr(#) n dIBg(Z—d)
Jad? + a2 J4d? + a2

So
2ral
F,= —=2ral 3B +2dBy]
s ra
H H _ 2d _ *
with B, and By given by Egs. (5.48) and (5.49) and cos® = T 1= Jad? +a?, and | - I*.

c) To determine the limiting term, simply let r - 2d and take the lowest non-vanishing term in the
expansion of the magnetic flux density.

F, = ”Ta'[aBr +2dBy]

_ ral pol*a pol*a® (1
Fz= nc? [a( Sld (23)2)+2d( 04 ((2d)3))(_2%l)}

F N 371-,“0 a4| X I*
z 32 d*

The minus sign shows the force is attractive if | and | * are in the same direction. This same result
can be gotten more directly, using



F, = V,(mB,)
with m = za?l, and (from Eq. (5.64))

_ Ho 2m*)
B, 47r(

withm* = za?l*, andz = 2d

_ MO 5 21k A2 3 __3mpo atl x1*
F,= 47r27ral nal( (2d)4) 3 7

with agrees with out previous result.
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3.5.19 The system is described by

A

X

[ PN

The effective volume magnetic cﬂarge density is zero, since M is constant within the cylinder. The
effective surface charge density (h - M from Eq. (5.99)) is My, on the top surface and —M; on the
bottom surface. From the bottom surface the potential is (for z > 0)

Oy = ﬁ(—Mo)Zn_“a pdp)m = I\go (,/(a2 +2%) —z)

0 (p*+7°

By symmetry, the potential from the top surface is (on the inside)
M
o = Mo ([@r1-2?) -a-2)

The total magnetic potential is

® = Dy + Dy =—%( @+7) -2) +%(\/(a2+(|_—z)2) —(L—z))

So, on the inside of the cylinder,

Ho = L (M ({@ ) -2) + e (J@ =27 --2))

H, = Mo 2_ VA _ L-2z
2 J@+78) (a2 +(L-2)?)

while above the cylinder,



Mo z
H; = - - +
z 2 |: J(a2+22)

with asimilar expression below the cylinder.

—

!

Thusinside the cylinder,

= po(H+M)

z—L :|
J(az +(L-2)%)

—

Mo z
BZ = 2_ -
,U()|: 2 |: J(a2+22)

L—z :|+Mo:|
J(@+(L-2?)

BZ — ,UOQ/IO Z +
J@2+2?)

while above the cylinder,

L—z )
J(a2+(L—z)2)

B _ oMo z 3
L2 2. 52
J@2+2?)

First we plot B, in units of a for L = 5a

z—L :|
J(az +(L-2)?%)

>z ) if z<5

1 A +
2 ( J(+2)

9@ =

J(1+(5-2)?)

92

;( .
2\ [

Z5 if 5<z
J(1+(5-2)?) )

0.8

0.6

0.4

0.2

0 2 4

And smilarly, H; inunitsof afor L = 5a.



N

2— z — >z if z<5
J(@+22) J(1+(5-2)2)

f(z2) =
_1 z z=5 i
2( J@2) * J@62?) ) if5<z
f(2)
0.4 ]
0.2
0 4 ;6 8 10
-0.27]
-0.4 7
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1.5.26 The system is described by

1) ’

Iy
¥
—-
|

Since the wires are nonpermeable, 4 = po. The system is made of parts with cylindrical
symmetry, so we can determine B using Ampere’s law.

VxB = ,uoj, or I%-de ,uoj‘j-da
On the outside of each wire,

- — |
_[B-dl = B27p = pol —>Bout=£l7r—°p

On the inside of each wire

2
B.dl = _ ol g = el poi R
J‘B-dl—BZEp—,uoI?, Bm—??WlthR—aﬂb

From the right-hand rule, the B from each wire is ig the ¢ direction. From the above figure, using
the general expression for the vector potential, we see A is in the £z direction. Since V x A = B,

BZ = _LAZ d AZ = _"‘ Bzdp

op
Thus
—‘z’—jr'(ln% +C) = _ﬁ—j['(ln ‘F;—z + 1) on the outside
AZ = I 2 . .
-4 on the inside

where I’ve determined C = 1/2, from the requirement that A, be continuous at p = R. Let | be the



length of the wire. Then we know the total potential energy is given by
W = % jﬁ «Ad3x = '5 _[[JaAdaa + JpAday]

Consider the second term '7 j JoAday,. The systemis pictured as

From the figure
Ba=d+8p, p2=d?+ p2 —2dppcos¢

so, sinceJp = —~
% | JoAdas = $—15 [[Aau(pa) +An(py 1podpsdp

| “_lj[lnga+l gg :|pbdpbd¢

| pol 5 °f . d? ph
_ﬂ—?anj‘O(m?—}—l— bg )pbdpb
&)(l+2m

- par e (tran g ) - 5 (52

Thefirst term & [ JaAda, isequal to

Thus

or
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2.5.27 The system is described by

ol

Using Ampere’s law in integral form
J‘ B-d = ,UOIenCI0$d
we get

B='L2l—oli,p<b

T b?

Bz’lé—ol b<p<a

1

T P’
B=0,p>a

Now the energy in the magnetic field is given by (| is the length of the wires)

Wz%j%-ﬁd&z%ﬂoj‘Bzd&

- (5 ) [ () oaozs (5 o

_ 1 u_o')z 1 al_ 1L
- 2,uo(27r (g +2nd) =54
L L _ Ho(1 a

| 47r(2+2|nb)

If the inner wire is hollow, B = 0, p < b, so

L _ Hoppa
[ _27r|nb
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3.5.29 The system is described by

This problem is very much like 5.26, except the wires are superconducting. We know from section
5.13 that the magnetic field within a superconductor is zero. We will be using

w= 2 [3- Adx - '5 [[aAda, + JvAday]

Using the same arguments as applied in problem 5.26,

2 .
A —%(In% +C) = —%(In% + 0) on the outside

0, on the inside

Thus if we consider the second term '7 j JpAday,

% | JoAda = 51 [[Aau(pa) + An(py 1podpsdp

~ %#%2%_“2 Ing—ipbdpb = %(%)(2"‘%)'2

The first term - [ JaAda, is equal to
Thus
S0

Now using the methods of problem 1.6, assuming the left wire has charge Q, and the right wire charge
—Q, we find

d-a g d-a g
_ _ 1 1 SO T i
¢12 = X Edr = 5 Ib ( =+ )dr ~ In



Thus
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1. 6.8
The physical system is shown as

[

X

We know from Maxwell’s equations that —V-M plays the role of the effective
magnetic charge density. Using the fact that

M:%@xﬂ

and the fact that J = Ppol¥Us Where p,, = 6 (r — a) ope1, Where 0y, is given
by equation (4.58) of the textbook:

Opol = 3€0 <€E;26;0) Epcost =3¢ <;;2€;0 ) FEjysin 6 cos ¢

Using the figure
U B | . R
M= B (9: X J) = Eapolvasm&S (r—a) (—9)

Thus

P = -V-M = Opot¥ €08 06 (r — a) = aw3eq ( £~ %

€+2€0) Egsinfcos ¢ cos6 (r — a)

This can be written

£—go CZAWAZ S
= E —_— _— -_— -
Pm = aw3eg <€+2€0) 0 < 15) ( 5 6(r—a)

Using

Qm = /Y;m*'rlpdsz‘



there are only two moments which survive for this distribution

£—¢€p 8r\ 1
= +4° Ey| —1/— | =
Q2+1 a’w3eg (5+250> 0 ( 15) B

Using (on the outside of the sphere)

1 ym

lm

5 €—¢o 8\ 1 /Yy -V, !
= Byl =/ 22 2 (22—"2
Om aw3€0(6+250> °< 15)5( 2
b = a°w3e TNV E (- 811 Ll_YQ_l 1
m \e¥2e ) °\ " V15)5 2 r3

3/ e—¢p a®
= — E —
Om 5 <€+250)w50 0<r5)mz

Repeat the same steps to get the potential on the inside of the sphere.

Or
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1.6.11
a) Consider the momentum contained in the volume
c At
Ap = AtcAAg
_ Ap _
F= AL = CAAg
- F _
P= AR~ O

where I’m using the time averaged quantities. In class we found
cg=+S= %80|E0|2 —u

Thus

b) We are given
S= 1.4 x 10°W/m?
But we know P = u = 2. From Newton’s second law

FE _ FA Sc 1.4 x 103W/m?

a=-+— = = =
M mA ™A  3x108m/s x 1 x 10-3kg/m?

= 4.66 x 10-3m/s?

In the solar wind, there are approximately 10 x 10* protons/(m? — sec), with average velocity
V=4 x10°m/s.

AA—& — P=10x10%x4x105 x 1.67 x 102" — 6. 68 x 10-L"N/m?
-17 2
a— £ . F/A P 6. 68 x 107*'N/m — 6 68X10_14 m/32

m= mA mA  1x10-°kg/m?
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1. 6.21
a) I'm going to represent the dipole as a charge —q at 7y and a charge
q at T + 1. We take the limit .
gl —p
Thus
pP=q {5(5—770—5—5(5—770)}
Expanding around =0 give
p(@) = qV6(F —v) - (1) = =5 Vé(7 — )
As we’ve shown before for a collection of charges with charge density p and
velocity 7

-

J = pi == (5 V) 6(& — 7o)
b) The magnetic dipole moment is given by
= %/fx Jdbz = —%/fx ﬁ(ﬁ-ﬁ) 8(Z — 7o)d®z
Integrating by parts
%ﬁ- /6 (Z x 7) (% — 7y)d’x
Look at the nt" component of the vector - V (Z X )
[ﬁ' V(& x 17)L = DiBiEtmnTiVm = Y EtmnPrvm = [Fx 7,
ilm Im

Thus

m:

/ 5 x 7 (&) 8(F — 7o) dPa =

N =

Similarly
Qij = / (3$z$] - TQ(Sij) p(ﬁi")dSZL‘ = / (3.’1,‘11‘] - TQ(Sij) |:—ﬁ 66(5— ’F()):| d3$
Integrating by parts

Qij - Z/plal (3,1;1.’1;] — Z.’E%6U> 6(5)’— FO)d'BiL'
1 k

Qij = / <3pi-'1;j + 3pjz; — 2 Zpla:léij> 8% — Fo)d3z

1
Qij = 3piToj + 3p;Toi — 20 - Tobij
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2. 7.1 Ishall apply Egs.(26), (27), and (28)

SotS1 _ So—S1 _ R S | Ss
/ > = [ 5 =a, O =02—-01=S8In (Zalaz )
So+S3 _ So—S3 _ _ s _S _qainl S
> =a, / 5 =a. O0c=0--0,=35In ( 2. )

Q) So=3, S1=-1, =2, s3=-2

ai=1 a; =42
8 =sin™t ‘—2) — L rad
| (2J§ 4
1 5
a=—= a = |3
J2 2
Sc = sint 2 —1.1071 rad
1 5
2(+)(J%)
b)So=25, S1=0, =24, s3=7
_ |25 _ |25
al_ 2 ] aZ 2

_ s _S _qainl 24 _ 1
0c=0_-6, =Ssin (2(4X3)) 27rrad

To plot the two cases ReEx = X = cosx, ReEy = Y = rcox(x - d,), wherer = ay/a; and X = ot.
Case a) COSX, 2 COS(X+ %)



0.57

Case b) cosx, cos(x — 0.28379)

) /0{ 04 06 08 1
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1.72
a) The figure describes the muliple internal reflections which interfere to give the overall
reflection and refraction:

//
//

For the ij interface I shall use the notation

=

[ — E6 . 2n;
UTE, T Ni N
E” . .
1) Eo Ni +N;

Thus from the figure

Eg = EgRyp + r12E0R23r21ei¢ + r12E0R23R21R23r21ei2¢ +....

B
Ey = EoRi2 + r12EoRxr 2169 > (Ry1Rps€?)"
n=0

£ — B[ R, 4+ F12721Ry3
° 0( . (€ — RatRe3)

Similarly

E6 = E0r12r23 + E0r12R23R21r23ei¢ +....



E,=E 12623

1- R21Rx€'?

where the phase shift for the internaly reflected wave is given by

6 = 2r(2d)  wny(2d)
- = - 2
Now for a plane wave
S = 5 [Eal’
Thus
r_ S _ [l
S [|Eof
T-WWS _Nn3 s
V3 S ni s
From the above

R=| R+ 2r 151 21R23R12(C0SP — Ra1R23) + (Rial 21R23)
(1 + (R21R23)2 - 2R>1Rx3 COS¢)

_ N3 (F12r23)°

Y (1 + (R21R23)2 — 2R>1Rx3 COS¢)

|

Since these two equations are smple functions of ¢, which islinearly proportiona to the

frequency, they are smple functions of frequency which you should plot.

b) Sincein part @ we used the convention that the incident wave is from the left, | will rephrase

6 - 27r/gd) g ode

A1
n2

where 1, isthe wavelength in the medium =

this question so that n; isare, n, isthe coating, and n; isglass. In this case, we will have
N1 < Ny < ng, and Ry1R23 < 0. Thusfor T to be a maximum, from the above equation cosp = —1, or

¢ =r.
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2. 7.4 We have a nonpermeable conducting material, So u = uo, and we have J = oE, where ¢ is
the conductivity. The following figure describes the system:

p A
1

The two boundary conditions that we must satisfy for plane waves are

Eo+E) —E, =0

K(Eo - Ej)—KEj = 0
Or
Eo _ k—K

Eo  k+K

We must take into account the fact that J = oE. Adding in this term in Maxwell’s equations for a
plane wave, we get

-

k? = epw?{(1+iS

Thus we can write

kK' = Jeno(a+ip)
with

2

(,M+(&q2+1)”2
a:



2

1+(&)% -1 v
ﬁ:( = )

Thus

E_g_ 1- /efocCa —i [ElipoCh
- 1+ Jemoca +i/Eaoch

Eo
1) For avery poor conductor o isvery small, so keeping only first order in o

1/2
_(,/1+(%)2+1) .
o = 2 ~

p= 2

2) For the case of avery good conductor, -2- >> 1, sO
[ _2
~ o _ pows? _ 1
* %\ 20e 2m¢ ®0 [H0E

~ o _ 1
P~ 20z 3 [HoE

where | have used (5.165) to relate the conductivity to the skin depth.

112
1+(Z)% -1 c
= 2wsg

2
[10&)52

O =

1.0 2
1+Cl+i

ofe
Q

_ £ _j-c
1 3 Im5 _ O
< -
- T &

El/

0 _
- c i c

Eo 1+E+'m5

C|E
R“E—o

§=-1+2@1-i)

2
= (-1+60/c)® + (48)" ~ 1- 250l
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1.83

) N
y U

(Vi+y5)y =0, v =E(TM)ory = H,(TE)
As in class, we will use cylindrical coordinates, and assume

v(p.¢) = R(p)Q(¢)
We get the two equations

aaT:ZQ(qS) = -m?Q(¢) with solns Q(¢) = "™, m=0,1,2,...

& R + %% + (1 - T—;)R(x) (Bessel eqn. )

dx?
with regular solutions Jn,(x), and singular solution (which we reject as nonphysical) Nm(X). Here
X=yp.
Solutions:

T™: BC: Jn(Xm) =0, and

Lowest cutoff frequencies:

O = Ymn  _ _Xm
JH  RyER

Using the results of Jackson, p. 114,



Xon = 2.405,5.52,8.654, ...
Xin = 3.832,7.016,10.173,....
Xon = 5.136,8.417,11.620,....
TE: BC: J(Xm) = 0, and
E.p,¢) = Eodn(ymp)e™, m=0,1,2,....;n=1,23,...; ¥m = Xm/R

Lowest cutoff frequencies:

! !
O = Ym  _ _Xmn
JE  RJR

Using the results of Jackson, p. 370,

X, = 3.832,7.016,10.173,...
X, = 1.841,5.331,8.536,....
X, = 3.054,6.706,9.970,....

From the above we see the lowest cutoff frequency is the TE mode
wh; = 1.841K, withK = 1/(R/zn )
The next four lowest cutoff frequencies are:
wo1 = 2.405K = 1.31w),;
0y = 3.054K = 1.66w},

wh; = 3.832K = 2.08w);
w11 = 3.832K = 208(0’11

b) From Eq. (8.63) in the text

1/2
ﬂ”( w) [ (5)7]

2

(0]

For TM modes, n, = 0, and for TE mode, &, + 7, is of order unity. So for comparison purposes,
I’ll take

1/2
ﬁll(TE) = fl(X) = (j) (1+ 1?(12].12 )

X2

1/2
Bor(TM) = fo(X) = (ﬁ)

X2

where I’ve expressed the functions in terms of x = w/K.



172

(1+ 1.8412 ) X

x2 118412
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1.84

a) TM:
(VE+y2)y =0; yls =0; E,=y(xy)eee B, =0

Since we have a node along y = x, then we just take the antisymmetrized version for the square
waveguide, developed in class, ie,

. . n
p(xY) = Eo[ sin(EX)sin(15Y ) - sin(DEX ) sin(15Y) |
Again
Y2 = CaLzz(m2+n2), mn=1,2,3...., butm=#n
TE:
(VE+rPy =0; g—lﬁls = 0; Hy=y(xy)e'™; E, =0

Now the BC require 2—“3 = 0, but using a 459 rotation of coordinates, we see

0 _ A(_i N i)

on J2 ox oy

Thus the combination

w(XYy) = Ho[cos( MZX ) cos( nny) + cos( n”X)cos( )]
satisfies the above BC on the diagonal, as you can see by direct substitution.
Y2 = CaLzz(m2+n2), mn=0,1,23....,butm=n=0

b) The lowest cutoff freq. are: TM: w12 Or w21.  TE: o1 OF @10. From Eq. (8.63) in the text



Bra(TM) = (L)m

1-wilo?

1/2 COZ
TE) « (@ (1+¢)
ﬂOl( ) (1—60%2/602 ) COZ

For the square wave guide, we don’t have the antisymmetrization, but the formulas for the cutoff
frequencies are the same without the present restrictions on mand n. So for the square guide, the cut
off frequencies are

T™: w11

TE: wo1 (as before)
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1.854a)

For the TM modes, we saw in class the resonance frequencies are
TM:

; — p=0,12,....
Omnp = ,/i:_,u )I(?n;+pL72r m=20,1,2,....
n=123,....
TE:
7 — p=123,....
Omp = ,/i_u R’“Z”+|DL72r m=0,12,....
n=123,....
Thus—
®mp Xfm | pm?
T R L2
Jen
Omp _ | XE | pPm?
1 - R2 + L2
Jen

The lowest four frequencies are (in these units)

wo10 = 2.405
w110 = 3.832

i = [1.8412 + 22 (R)?

w1211 = J30542 +7T2(%)2

2.405,3.832, y1.8412 + 72x2 , J/3.0542 + 12x2



107

02 04 06 08 % 12 14 16 18 2

where x = R/L.

The answer is "No.” @15, and wo1o Cross when

v1.8412% + 12x2 = 2.405

or x = 0.49258. For frequencies smaller than this cross over frequency, w},; is lowest, whereas for
larger frequencies, wo1o is lowest.
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3.9.13)

\a)t

p(X,t) = q8(2)S(y — sinwot)d(x — dcos wt)

To illustrate the equivalence of the two methods, I’ll consider the lowest two moments.

n=0:Q({) = j‘p(f(', t)d3x = q = Re(ge-1%t)

n=1:p( = IP(?, HXd3x = gd(icoswt + sinwt) = Re[qd(f+i )e ']

So we identify p = qd(T +i ) as the quantity to be used in Jackson’s formulas.
Avrbitrary n: The n’th multipoles will contribute with maximum frequencies of o, = na.

b) The proof that we can write
ﬂ .
p(R,t) = po(X) + Y _ Re[2pn(K)e et
n=1
with
pn(X) = % _“T p(X, t)etdt
0
was presented in lecture and will not be repeated here.
c) We have already calculated the n = 0,1 moments by the method of part a). Now we
compute these moments by the method of part b).

n=20:

po(X) = % I;[qé(z)é(y—sinwot)é(x—dcoswt)]dt

Q = [ poGyd = 4 jo dt [ d*X[5(2)5(y - sinwot)3(x — dcoson)] = g



p1(X) = % I;[qé(z)é(y — dnwot)d(x — d coswt) Je'tdt
B = j dX(2p1(%)) = 24 j O dt j d3XRS(2)5(Y — Sinwoet)5(x — d cosmt)]

= Z%dj‘; dte'!(icoswt) + snwt) = qd(@+i )

as before.
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3.9.2 First consider a rotating charge which is at an angle a at time t = 0.

¥

d
\ &

Compared to the lecture notes for this problem, where we assumed ¢ = 0, we should let
ot - ot + a. Thus using the result developed in class, we can write for this problem

1 i 0
Q.(t) = Re %qd2 i _1 0 |ei2agizet
0 0 0
2
g ¢4
a -
d
3 -4 q 4

From the figure

Qtot(t) = Qal (t) + QaZ (t) + Qa3 (t) + Qa4 (t)

1 i 0
= Re %qdz(—e_i%+e_i37"—e‘i57" +e‘i77") i _1 0 |ei2ot
0 0O
1 i 0
Qot = %qd2(4i) i -1 0
0 0O

Thus from the class notes



2 6
gg = ‘1:153:;2 (qu%) 16(1 — cos’0) = CZZ kg?d*(1 — cos’0)

_ C%Zok® 23 27 1,624
P= 360 (d )16—10cqud

And, of course, the frequency of theradiation is 2.



PHY 5347
Homework Set 3 Solutions — Kimel

3.9.3

e

Since the problem has azimuthal symmetry, we can expand V(T t) (in the radiation zone) in terms
of Legendre polynomials:

V(T 1) = > bi(t)r 1P (cos0)
I

Using the orthogonality of the Legendre polynomials, the leading term of the expansion in the
radiation zone will be the | = 1 term.

1
by(t) = %RZI 1xV(?, t)dx = %VR2 cos wt

So,

—
. .

V(?,t) = (%VRZCOSCOt)/rZ = %COSwt = Re|: przr e—ia)t:|

with g = %VRZZ which should be used in the radiation formulas developed in lecture.

dP _ C220k4

GG = “3pe2 I sin0

27 14
p_ CZkK 8z _ _1 2 Zok4 B

3272 3 12r¢

with B = 2VR?2,

NY[
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1.9.11 We are working with small sources in the radiation zone.

} I=acosa,l
} I = - acos wyt

From the notes and Eqs (9.170) and (9.172),

Qm = _[ r'Ym™ pd3x

-9

24 ¢

-q +

_ 1 vy . (P 1) 3
M|m——|+1 IrY| V-(rxJ)dx
a) Electric Dipole Radiation:

Qum = j FYP pd3x
= I ro(x)o(y)[—gqo(z— acoswot) — qé(z+ acoswot) + 2g6(2) YT dxdydz

= —gacos wot[ Y (0,¢) + Y (7, $)] = —gadno coswot[ Y3 (0) + Yi(7)] = 0
b) Magnetic Dipole Radiation: Since the particles move in an orbit with no area,

c) Electric Quadrupole Radiation:

Qom = Irng‘*pd3X
= —Qdmo[aZ cos?wotY3(0 = 0) + a2 cos?wotYI(® = )]

= —Qdma?Y3(0)(cos2wot + 1)

where | have used cos?wot = (C0S2wot + 1)/2. Thus the Fourier Series decomposition of this
moment yields terms with frequency 0, and 2w,. The first term does not contribute to radiation, and
the second can be written



Q20(t) = Re[-2qa?Y3(0)e 20! ]

S0 Q20 = —20a2YJ(0) isthe quantity that is used in the radiation formulas of Jackson. Using Eq.
(9.151)

dP A 2|5 |2
40 20) = 55182, 0)F| Xz

and from Eq. (9.169)

a(2,0) = |(5>< 3 /7on = m ( 2qa2)r

where | have used Y9(0) = /-2 . Thus

Ar

la2,0)|> = c2k8q at

(2 0) = 2k2 ( 307 ¢ K0’ a“) ( é5 snzecosze) 321”2 Zok8c?g?a* sin“g cos?9

1
P(2,0) = 3%”2 Zokbc?g?at I_l(l—xz)xzdx = 3%”2 Zokéc?g?a* x 1i5

P(2,0) = 1 S Zok®c?q?a’
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1. The system is described by

/o

R(0)

and is azimuthally symmetric

R(0) = Ro[1 + B(t)P2(cosh)]; P(t) = Pocoswt; kR << 1

1 R(0)
Q= Iprzdrd¢dcose = 27r_“ X dcosdp _[0 radr

_2r (! ps o _ 4t 3, ,_ _3
-Z pj_lR0(1+3ﬁP1Pz>dcos0+O(ﬁ)— FoR3 ~ p = 52-Q

where I’ve used the fact that 1 = Py.  Since the system is azimuthally symmetric, Qim = dmoQio-

1 R(0) 1
Qim = 27pdmo _[_1 dxy? _[0 r+2dr = ZT’iSB”” _[_1 dxRy3[1 + (I + 3)BP,]Y?

Using Y? = /2L Py and 1 = P,

4r

_ 2npSmo [21+1 pis3 2
Qim = [+3 4r Ry [26'°+(|+3)ﬁ2l+16'2}

Notice that the | = 0 term is time independent and thus does not contribute to the radiation.
Next consider the | = 2 term.

Quo() = £/TPIERES = p = 77 QE VT PIEREP - ——REQB(Y)

Q(t) = Re[%RgQﬁoe—imt :|



Qu = Jz% R3QB0
dP(2,0
200 _ Zs ja(2,0) oo
aE(Z’ O) = |(5 X 3) rQZO
|5('20|2 = %sinzecosze
4
dPC(iéO) - ZZkOZ (SCE 3) FQZO X 15 sn%6 cos?6

2
Z 4(_) 2 7 (Ck4)2 _3_ R(Z)Qﬁo
-1l %0 Ik Qo sin%0 cos?6 = 1 0 (J207r )

= in2 2
160 k2 T 160 K2 T sin“6 cos6

= 9 6C2R4Q? 2 2
Z k C () B []

_ 9 62 2 2\y2 9 62 2 4
~ 32001 2ZkCRQﬁOX2”I (1—x%)xedx = 200m > Zok°C?R3Q? 5 x 21 x —+ i

__3 6~2P42 22
P = 20007 20K ¢ RaQAa
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2. The system is described by

I(t) = locosmt = Re[loe ]

Ity = L1)s(r - a)s(coso)p

where | determined the normalization constant < by the condition j J.da =1

—

3(t) = Re[%oé(r - a)6(cos@)¢e‘i‘"t} ->J= I%%S(r —a)6(cos0)o

We use the general expression for H and E in the radiation zone given by Eq.(9.149). Since this
system has no net charge density and there is no intrisic magnetization, the the expansion coefficients in
these equations are given by

ag(l,m) = F_“Wﬂk(r - 3)iikryd®x
_ k2 7 FAVEAY
aw(l,m) = i—MIY{“V-(rxJ)h(kr)de’x

ar - J = 0'in the first equation, so there is no electric multipole radiation. In spherical coordinates
Txd=-alk
Using the formulas for V-.Ain spherical coordinates given in the back of the book,

- cosf 0
V- (7xJ) = sme ae(JS'”QJ)‘ Sin0 >~ 30°

The first term does not contribute, because cos® = 0, while the second term can be written, using
the chain rule,



v (FxJ) zsineacgseJ

The problem has azimuthal symmetry, so m = 0. Realizing derivatives of 6 —functions are defined
by integration by parts,

_ _ Smok® o 0 : _ k2 O (cinayoey 17
av(l,m) = |I(nI‘++1)"‘YIO (sneacoseJ)J|(kr)d3x— I(II+1) I[ oo (Sn@YY? )}JJ|(kr)d3x

aM(l,O) — i27k? IO 2] (ka)

m 0 cos

0 (Sn@YO)lcosg 0

an(1,0) = —122K 1082, Gay(1 - ) L v (.o

JId+1)

Since Y?(x) is either an even or odd polynomlal in X then only odd | contribute to ay (1,0). This
determines the expansion coefficients, and thus H and E in the radiation zone are known through
Eqg.(9.149). The power distribution is given by Eq. (9.151)

b) From our previous answers, we see ag(I,m) = 0, and that the lowest magnetic multipole
contribution isay (1, 0).

aw(1,0) = %I oaj1(ka)(1 - xz)”Z%Y(l’(x)h:o

Using
itk ~ K8; Dyepgl o - |3
am(1,0) = |27rk3loa2\/; _ Ik3\/_M|0
Mo - 2T 5
V2 4r

Note that you would get the same answer, if you used Eq. (9.172) directly.
From Eq. (9.151)

2
& - 22k02 (2nk3|:a2/21 ) = s - oz Zoki(loma?)* i

If we compare this result with the one that we get for an elementary magnetic dipole, which is
given by Eq. (9.23)
with the substitution p — nvc,




aP _ 1 AFAR G2
o) 327r220k [m|”sin<6

Thus we may identify
|r?1| = lora?

as would be expected.
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1. 101
a) Let us first simplify the expression we want to get for the cross section. Using fig = 2,
do a0 A0 f) = Kabl 2 — 130 A2 — LA (2x80)2— 2R
40 (£0,h0,N) = k*& [4 €0 « 0 4|n (zx &) -2 n]

Orienting the system as

X
F
X
g M
P L
\9
<
y
and using
éo = 0!0$(+ﬁ0 , with |O{0|2 + |ﬁ0|2 =1
i = cosOz + sin %
then

do s A Ay 1426l 5 1y 12cin2n _ Lip 12cin2n
dQ(so,no,n)—ka[4 loco|” sin“6 4|[30| sin“0 cose}

Using the result for the perfectly conducting sphere Eq. (10.14)

2
19 (1,2, 20,M0) = K'a’

é*-éo—%@xéo)-(ﬁxé*)

Using &, =

do a2 2 A _ L4ab 1 2 aeip2f1 1 2
dQ(n,sl,so,no)—ka|ﬁo 2[300050| = k*a®|fo| (1 20050)

Similarly &) = X'
2 2
g—g(n,8||,80,no) = k4a6|a0 cosf — %ao| = k4a6|a0|2(cose —~ %)
By definition



g_g(é(h ﬁOl ﬁ) = g_g(ﬁl éJ_l éOl ﬁO) + g_g(ﬁl é”l éOl ﬁO)

— Kk4a6 2(1_1 2 2 1 2:|
= k"a [|ﬁ0| (1 5 cose) + |ao| (cos@ 2)
which simplifiesto
Lo (80, f10,M) = k*a®[ 2 ~ o2 $n%0 — L{Bo[2sin%) - cos |

using |eco|* + |Bof> = 1, and cos?d = 1 — sin4.

b) If &o islinearly polarized making an angle ¢ with respect to the x axis, then
€0 = aoX+ fo = COSPX+SN¢g , SOag = COS¢Y, Bo = SNP
Then from part @)
g—g(éo,ﬁo,ﬁ) = k4a6[% — |eo[?sin?6 - %|ﬁo|zsin20 - cose}
= k4a6[% — cos?psin?6 — % sn?¢sin?g — cose}
Using cos2¢ = cos?¢ — sin’¢, this expression simplifiesto
g—g(éo, Ao, N) = k4aﬁ[%(1 +c0s?0) — %sin2 C0S2¢ — cose}

as desired.
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1. 10.2
Orienting the system as

X
0 n

\ ?

&

Then
7L = cos 02 + sin 0%
Using the result for the perfectly conducting sphere Eq. (10.14) and writing
&0 = @ + Byf. where |ao|® + |8,]> = 1,
do

Soa A a N 74 6 |ax
o €y c0y -
dQ(nee fig) = k*a® |&

Using &€, =94

do 2

— (1,81, 80,70) = k*a®

1
" Bo — 380 cos

461452 1 :
= k"a”|By| 1—§cos9

Similarly & = 2’

do 2

d_Q(ﬁ,é|\5é0aﬁ0) = k4a6

1\ 2
= k*a® |ao? <cos0 - —)

g1
Qg COSU — —(
0 270 2

By definition

99 (2o, 0, 1) = 32
a0 \Fo e =00

e , 1 2 , 1\ 2
= k*a® ||By] 1—50039 + |l cos0—§

WA A a do,. . . .
(M, é1,0,70) + m(n,sn,so,no)



which simplifies to

do . . . 5 . 1 .
m(%,no,n) = k*a® 1 |ao|? sin? 9 — 1 |8o|% sin? 6 — cos @

using |ao|? + B,/ = 1, and cos?0 = 1 — sin? 6.

b) If &; is a linear combination of circular polarizations

&o [&' + 19 +re™™ (3 —i§)]

1
VI +r2V2

As is stated in problem 10.1, ¢ is measured with respect to the &’ axis. For
orientation, see the figure:

A

A
7 n

A

z

In term of the unit vectors in the z and y directions, respectively
2’ = cos ¢z + sin ¢f; § = cos ¢f) — sin pF

corresponding to a rotation about the z axis of ¢.Thus

1 ) )
ay = m [cosd) (1 + re“") —isin¢ (1 — rew‘)]
1 . ia . i
Bo = m [51n¢(1+7'e ) —i—zcos¢)(1 —re )]
Notice that
1
lao|? = ETDP [cos? ¢ (1+ 12 + 2rcosa) +sin® ¢(1 + r? — 2r cos @) — 4rsin ¢ cos ¢ sin ]
T
1
1Bo|* = () sin? ¢ (1 + 7% + 2rcosa) + cos? ¢(1 + r? — 2r cos ) + 47 sin ¢ cos sin |
and

|0é0|2 + |/30|2 =1



Plugging these results into

do . . . 5 . 1 .
m(%,no,n) = k*a® [Z — |ao|* sin? 6 — 1 18o]% sin? 6 — C080:|

gives for the terms not linear with r,

d0'1 14 6 5 2
) =k"a [8 (1+cos 9) cos

whereas the terms linear in r contribute

dU2 _ 4 6 _§ T -2 _
70 =k"a [ 1 (1+T2>sm 6 cos(2¢ — )

where I have used
cos(2¢ — a) = cos 2¢ cos a + sin 2¢sin

and
cos 2¢ = cos® ¢ — sin? ¢

Adding the two contributions gives

do
ds2

(80, M0,7) = k*a® g (14 cos®6) — cosf — 3 <

2
1 > sin“ 0 cos(2¢ — )

r
1+r2

the desired result.
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1. 11.3 Letus just focus on the 0, 1 component transformation, since the 2, 3 components
remain unchanged, if we take the relative velocities between Lorentz frames to be along the x -
direction. We want to relate a single Lorentz transformation to two sequential transformations as
described by

K K’

L V2

¥
L

Thus we require
A= AA;

where A is a Lorentz transformation. Rewritten explicitly, the above equation reads
Yy By _ 2 —Pay2 y1 —Pina
By v —Bay2 72 —Biyr 71

_ yov1+ Poyv2Piyr —y2B1y1 — Bayaya
—y2P1v1 — Bayay1  va2y1+ Bay2Biy1

So

Yy =v2y1+ Bay2fiys

By = v2P1y1+ B2yey:

ﬁ:ﬂ _ YaPiyi+ Bayayr _ Bit B
Y

y2y1+ Bay2Piyr 1+ 2P

Or
Vi + Vo

V= V1Vo
1+7

as required.
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2. 11.4 The ”clock” is shown in the figure

I | M

a) To the observer the pulse travels the trajectory

[
.

\
—_—

VAL

Thus, if the speed of light is ¢ in both reference frames,

2
cAt =24/d? + (UTAt>

or 0
At = ————= = yAT

cy/1—v2/c?



b) Now let us assume the clock-mirror system is moving away from the
observer with speed v. Assume the fixed and moving frames coincide when a
light pulse is given off. In the moving frame the time required for the light
wave to move to the mirror and then to the phototube detector is given by

— =At
C

In the rest frame, the light hits the mirror in a time determined by
d
cAt; = — + vAt
Y

where 4 comes from the fact that the moving distance d is ”length con-

5
tracted.” Solving for Aty

d
v(c—v)

Similarly the time for the light to travel from the mirror to the detector is
determined by

Aty =

CAtQ = g — ’UAtQ
v

or

Ao
v (c+v)
So the total time in the fixed frame is given by
d 1 1 2d 2d
A et A A = — et et _— = A /
=+ 80 = L+ o) ~ e T
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2. 115

! !

uj = A -
vu/ b !
1+ —CZ” y(1+ =

and
dt = dt'y(1+ %)

Thus taking the differential of the first equation above and using the second equation for dit,

wu, 32
du (L+=Da - +vLa  (1-%)"
B I ay = c c _ c a
dt (14 23 1+ 2y
y CZ CZ
Similarly,
e, (1+%)a@-ugciza;|
da ~

vu/
r’d+—z)°
This is equal to the expression we want to prove,
V2

1- v .
déltl =a, = —( VS/Z a + C_V2 x (@ xU”))
L+

since the BAC - CAB theorem shows that

!
5 wu
Vo2 v
a, + 7 x @ xU) = (1+ 02” )a’l—u’l 2 a
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4. 11.6

Background:
1

dt =~(r)dr, = ﬁ

where dt is measured in the K frame and d7 is the proper time. Using the
Lorentz transformation for acceleration

P ik

dj| = —%=—dj|, but in this case @' =0
C2
dv dv’ dv’
a= i (1- 1)2/02)3/2E, where ag is acceleration in Ky and a’ = .

dv = (1 —v%/?)*?d'dt = (1 —v?/c?)d'dr

v dv , T
/o T/ ¢ /o ar

1 1 1 c+v
~Zeln(e—w) + zel —a't = =cl
5¢ n(c v)+2c n(c+v)=ada'r 2cn(c_v)

1.7 1 7

2a’r c+uv esd'T 1 ec?T —eT T a'rt
e ¢ =( )—>v(7')= — =c| — — —ctanh(c)
[+

eza”r + e~ cd'T

dx
i v(t) — dz = v(T)y(T)dT

tanh(‘”’
xlg_/dm—/ dT—C/ dT—C/ tanh cosh(
\/l—tanh2(“"

T2 1 2 /
. c a't
=c sinh —a'7 | d7 = — cosh(—)|72
" ¢ a c

Let’s work part b) first:
b) The 10—year time frame going out is divided into two parts:

1%t 5 years: 71 =0,72=5yrs,a' =g

o2 = ‘;—f [cosh( Z )—1} [72 (a,—‘;) (cosh(alzz) - 1)}

)dT



a'ty  9.81-5-365-24-3600

=5.16
c 3 x 108

—¢ {72 (a,’;) (cosh(Lf) _1)] :c-5-yrsﬁ lcosh(5.16) — 1]

= 83.4 light-years

274 5 years: 71 = 5 yrs, 7o = 10 yr8, @’ = —g
By symmetry, this is the same as the first five years, 83.4 light-years.

Total distance after 10 years:
TTotal = (83.4 + 83.4) light-years = 166. 8 light-years

a) Working out the time that elapses in the Ky frame.

155 years:

dt:’ydT—>t:/ 1
0 \/1 — tanh?(a’7/c

dr = / cosh(a'r/c)dr
) 0
c . ., at 1 ., alT
= J smh(T) =T (m) smh(T)
1
— t = byrs - —— sinh(5.16) = 84. 4 yrs

5.16
2nd 5 years:

t = 84.4 yrs by symmetry
By symmetry, the return trip takes as long as the trip out.
— tiot =2+ (84.4+ 84.4) yrs = 337.6 yrs

It is the year 21004337 = 2437 on earth and the twin on earth is 357 yrs old!
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3. 11.15
From Eq. (11.149), it is clear that we should take ﬁ | 2, soﬁ \E = ﬁ .B = 0. Then

E' = y(E+ f xB)
B'=y(B-FxE)

The vectors in parentheses should make the same angle wrt the x axis 0’ if they are to be parallel.
This can best be seen from the figure,

¥

-BxE

From the figure

E' = y(Eol - B(2Eq)sindi + B2E cos0])

B' = y(cos02E,T + sin62Eqj — PEo))

Thus
, _ 2pcos@  2sinf-f
tand” = 1-2Bsind  2cosH
(2cos@) - (2Bcosh) — (1 —2Bsinh) « (2sin6 - p) = 0
or

28%sin@ — 5B +2sind = 0

This quadratic equation has the solution



B = 7 (5- [(25-16sin%) )

where I’ve chosen the solution which give g = 0if 6 = 0.
If 6 << 1, then 8 - 0, and the original fields are parallel.

Ifo > n/l2then p= £ (5-3)=1/2. y = %

§=0+ow—%n

B =B = y(2E0) - $E0)) = vEo3)

So in these two limits, the fields are parallel to the x and y axes, respectively.
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2. 12.1(a)
L = —%muau“ - %uaA" (invariant Lagrangian)
Show this Lagrangian gives the correct eqn. of motion, ie, Eq. (12.2)
= e F

The Action is A = j” L dr.
71

0A = 0 yields the Lagrange equations of motion

dooL oL _yg
dr du, OX,

d oL _ _d,«_ 90A* dx*
dr ou, mdru C ox# dr

aTLa = —%UpaaAﬂ

So £~ — L = 0 yields
m&ur = Qugornr - doAru = Fup@eas - a0a)
or

d%u" = %F“ﬂuﬂ



PHY 5347
Homework Set 8 Solutions — Kimel

3. 122 (a)
L' =L+ dz(t*)

SIIZ(L’ —L)dt = [6(A(t2,X) — A(t1,X)] = 0 » L and L' yield the same Euler-Lagrange Egs. of Mot.
1

where the last equality follows from the fact that variation at the end points is zero since the end
points are held fixed.

(b) For simplicity of notation in this part, I’m going to set ¢ = 1.
L =-mJ1-u? +6l-A—epwith A" = (¢,A)
If A > A% + 0%A, then
¢ — ¢+ 0°A
A - 3-VA
where the minus sign in the second equation should be noticed. Thus
L—>-m/l-u? +€li-A—ep—6l-VA-e’A
Now
A(t”) 5 A(t”)ax“ = OALVA-T
Or
Lo>-ml-u? +et-A- ep — Gt A(t”)

By the argument of part (a), this Lagrangian gives the same equations of motion as the original
Lagrangian.
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1. 123 .
a) Take Eo along z, Vo along y

¥

Generally

Since B-— 0, and E- Eoz

dp;

G~ o
dpy _
&

The initial condition p(0) = mve  and the above equations show the subsequent motion is in the
y — zplane. Consistent with this initial condition, we have

py(t) = mvo; p(t) = eEot

Et) = {P2(t)c? + m?c* = [/m2v3c? + m2c* + (ceEqt)? = Jwd + (ceEot)?
Using

v= E

p=myv=-—3V

y( ) _ py(t) _ NMVo C2

E/c® Jo3 + (CeEqt)?

2
y(t) = VS [*__dt . MVOC Gty

ceky 0 /p2+t2 - ek

where p = &= So



y(t) = L3S ginp-2( 10 Eq. (1)

(0]
0 0

Similarly
pz(t) . eE()tC2
Vzt = =
© Et/c? JoF + (CeEot)?
Thus

eE 2 pt
Z(t) = Ce(I)ECo . ‘/% = c( /(p2+t2) _p) Eq.(2)

b) From Eq. (1)

)

ceE

— sin(F2k) = pSinh(ky), withk = 13:9%

t =
Then from Eq.(2)

z- Cp(,/s'nhz(ky) T1- 1) Eq.(3)
Let us plot (,/sinhz(x) +1- 1)

207

1 2 X 3 4 5

Forsmalt: t/p << 1, andky << 1. Thuswe can taylor expand Eq.(3) and get
z = cpk?y?/2
which isquadratic iny giving a parabolic shape.

For larget : t/p >> 1, and we see the sinh term dominates in Eq.(3) and we get

cpe
2

~

which is an exponential shape.
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1. 12.4 The velocity selector and coordinate system are described as
X

Ax
4

Y

A

L

We begin with the Lorentz force
dp DU S,
—=q|E+-xB
at ! ( * c )
With the choice of directions of the field, the requirement that ‘;—f =0 so
that the particle is undeflected yields from the above that

x B=0

ol

E+

&

E
By

or from the figure .
E

&,
[

Then @ = c%é. Now assume ¥ = @ + AvZz, then

d A
P _ —q—vBi
c

dt

Or, taking the z component of the above equation
Av

dp(¢)
—— - =q—B
dt q c
where I’'ve dropped the minus sign since the sign of the deflection of the
particle is unimportant.
dz(t A
palt) =my 28 — BV,



Thus

2 2 2 3E2
A= A2y 2 2
gBt qB (E) q

Let us assume that L,u, and E are given. In term of these variables, using

B=E:
Av = Ax—2m703E2 = H myc? (2)2 U
q (Eﬁ):st . \gEL c

For a numerical example let us take an electron with, u = ¢/2, v = 2/v/3,L =
2m, E = 3x 105V /m, Az = 0.5 x 1073m, m = 9.1 x 10~3'kg, ¢ = 1.6 x 1071°C.

_ 05107 <9.1 x 10731 - (2/v/3) - (3 x 108)2) (l) u

A
v 2 1.6 x 10-19 -3 x 106 - 2 4

Av =62 x 1075
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2. 125
a) The system is described by

Z

Backgg)und: yarticleﬂhaving m,e. Chgoseg 1 to Band E. We want E’l —0=y(E+dx §).
Thus 4 x B = —E; now B x (G X B) = CE x B. Using BAC - CAB on the Ihs of the equation gives

—

u= c%. Thus from the figure,

Then, using Eq. (11.149)

Bj-0; E.=0; Bj=0; B, -3B-/1-(4)°B
So

Now from the class notes,

!
d_?’ = U x &g, Where dg = % where in this case E' is the energy of the particle.

I’ll choose the same boundary conditions as in class, decribed in the figure.



U, = wga[cos(wgt)és — Sn(wgt)é:]
where U’ (t = 0) = wga (ie, the BC determine a).
X'(t') = ujt'é2 + a€zsinwgt' + &1 cosogt’)

Consider the inverse Lorentz transformation between the frames,

ct y By 00 ct’
z | By vy 00O VA
X 0O 0 10 X'
y 0O 0 01 y'
or
t = (yt' + Byz)lc = (yt' + Byasinogt')lc = f(t') » t' = (1)
So

z(t) = Bycf1(t) + yasnwg (1)
X(t) = acoswg f1(t)

y() = upf(®

b) If |E| > |B|, one can transform to aframe where the field isa static E field done. Then the
solution is as we found in section 12.3 of the text, with the above transformation taking you to the
unprimed frame.
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3. 1214
a) We are given

__1 apf_ L3 pc
L = —5-0uAg0 A — LA

which can be rewritten

L = —=L-0pA“0PA, — LI,A"

8r
Using the Euler-Lagrange equations of motion,
aﬂ oL _ oL =0
0(8PA,)  OA,
Noting
oL __1 5 pc
0(0PA,)  dn”
oL _ _ 11
0A, cy

The Euler-Lagrange equations of motion are
0P (0pA") = 0p(0PA") = AL 3o
or
Op(0PA* — 0°AP + 0°AP) = 0FP* + 00" AP = 4T”J"
If we assume the Lorentz gauge, 03A° = 0, then the above reduces to
opFhe = AT 3o

Maxwell’s equations, given by Eq. (11.141).
b) Eq. (12.85) gives

_ 1 apy_ 13 pe
T6r (FapF) — 5 JA
The term in parentheses can be written
FupF? = 20,Ap0°AP — 20,(As0PA%) + 2A50P 0, A

The last term vanishes if we choose the Lorentz gauge, and the second term is of the form of a
4-divergence. Thus the Lagrangian of this problem differs from the usual one, of Eq. (12.85) by a
4-divergence 0, (Ag0PA%).

The 4-divergence does not change the euations of motion since the fields vanish at the limits of
integration given by the action. Using the generalized Gauss’s theorem or by integrating by parts, we



see the 4-divergence gives zero contribution to the action.
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2. 14.2 Background. In the nonrelativistic approximation the Lienard-Wiechert potenials are

—

(]5(?,11) = %lret, R(?,t) = %lret

Let us assume that we observe the radiation close enough to source so R/c << 1andt' = t. Then
in the radiation zone

>l
I

—)_—b _'_Ai _Aa —bzeﬁxﬁ
B—VXA—naRx ncat,xA R

I
Wl
X
>

E

dP() _ ¢ R§|2:4e_7;|gxﬁ|2: 462 V[ sin?0

dQ A ncs
where 6 is the angle between fi and 3 (assuming here the particle is moving linearly)
262 12
P(t) = &=V
) = 255

Let the time-average be defined by
d)y = L fodt

Then

() - o

2 .
(PO) = 25 ()
a) Suppose X(t) = 2acoswot. Then v = gTZZZ — —aw3 coswot
(NFy = (acoé)z% IT cos?motdt = (awd)?/2
0

So

P(t 2 :
() = oz aod)"sin'o

PO) = L5 (a0f)’

b) Suppose X(t) = R(icoswot + sinwot). Then



V(t) = —Rw3(Tcosmot + Sinwot)
i k
AxV=| sdnfdcosp  sndsing cosh
—Rw3coswot —Rosnwot 0

dP®) _ _e?

dQ 4rcs

(Rw3)?[ cos?0 (sinfwot + cos?wot) + sin0(sin®(wot + ¢)) ]

dP(t) \ @2 ,.2 (1+cos?0)
() ~ 2 Rod) =

_ _¢€? 242 L A+x?) o 2e2 242
(PO) = 727 (Rwd)*2r |, 5= 2 (Roj)
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1. 14.4 Background. In the nonrelativistic approximation the Lienard-
Wiechert potenials are

. e o e
¢($,t) = §|reta A(l‘,t) = EIB ret

Let us assume that we observe the radiation close enough to source so
R/c << 1 and t' 2 ¢. Then in the radiation zone

S s o 0 - 0 - e,BXn
B: A:A— A:—A— A:
V x n@ X nth’ R
E=Bxn
dP(t) ¢ |, =52 €| 2 e oy
—_— B = —_— n =
dQ A ’R ‘ 4dre ‘ﬁxn 4med [ sin”0

where 6 is the angle between 7 and ﬂ (assuming here the particle is moving
linearly)
2e%
Hﬂzgﬂﬂ

Let the time-average be defined by

twy=1 [ s

Then 4P() 5

t € .2 .12

< ) >: drcs 9<'”| >
2e? /.
(P()) = 55 (lol*)
a) Suppose Z(t) = Za coswpt. Then ¢ = % = —aw? coswot
1 T
<|v|2> = (au.)g)2 ;/0 cos? wotdt = (awg)z/Z

So

dP(t e? 2 .
(%0) = s (s

(P(t) = 55 (aw])’

b) Suppose Z(t) = R(icoswot + jsinwpt). Then

0(t) = —Rw? (i coswot + jsinwot)



A

nXv= sin @ cos ¢ sinfsin¢g  cos@

i j
—Rw3coswot —Rwsinwgt 0

dP(t) i

dQ = e (ng)z [(:OS2 0 (Sin2 wot + 0082 (-Uot) + sin2 0 (Sin2 (th n d)))]

<dP(t) > e? (Ru)? (14 cos?0)

dQ Ty 0 2

e? 2 (14 2?) 2¢? 2
(Pe) = oz (Re) 2 [ 5o = 25 (Rah)
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2. 14.5 This is a one-dimensional problem in dimension 7.
a) Let ¢ = ze. We know that nonrelativistically, we can use Larmor’s

formula 9 9
2 (@) _2 & (av
T 3m23 \dt)  3m2c \ dr

where I've used Newton’s second law,

dp av

dt —  dr

The total energy radiated is

AW:/ Pdt:2/ Pdt
—o00 0

dt = mQ%J %5

and from conservation of energy

Using the fact that

Bm _ v*(r)m
BT = R V() = V(i)

v(r) = \/E\/V(rmin) —V(r)

AW =2- 3 m2c3 \/7/Tmm ( > (rmig = V(r)

b) If V(r) = 2Ze?/r, we can most easily do the integral by changing
variables from r to V (r)

dv (r) 2dV
d = = Z -
" aviny/ar] P Ve
av\® (2Z€2) v
dr) ot (2Ze2)?

0 2 2
/ Vo gy dle) jm 1 )16,
Vo Vi =V 3m2c3\ 2 \ zZe? /) 15

4(ze)® [m 1
A /22
W= 3m2c3\ 2 (zZeQ)

where Vi, = V(Tmin) = 52

-0

2
AI/V_é(ze)2 m( 1 \16 (muv] 5/2_§zmv8
C3m2A3\ 2 \2Ze?) 15 \ 2 45 ZcP
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3. 14.7 The system is described by the figure

vyt

(1)

a) From Larmor’s formula

p_2.@ () _2 ¢ (V' _2 ¢ (27e)°
- 3m2c3 \dt) 3m2c3 \dr )]  3m2c \ r(t)?
©° S 2 oo 1
AW:/ Pdt:2/ Pdt—2.2 %3(z2e2)2/ ot
o : Bmc o P+ (0?)

2)2 iy 1724728 1

dupb® 3 m2c3uy b3

b) Using the result for 7mi, from problem 14.5 for b,

2 (ze)?
AW =2. 32d (2Ze

AW — 172°Z%5 1 - T 2mud
3 m2c3yy (22262> 24 Zc3

2

m'vo

5
which compares to AW = £Z722 for a head-on collision.
c) Following the book we define the radiation cross-section x as

—ombdb = -~ 2 ° . Z g

1wzt Z%e8 /°° 1 1724728 2
b b3 3 m2c3vg  bm

3 m2c3y,

m

Using the uncertainty relation to estimate b, as

b P
muvg

1724 Z%e% 2mmuy (27r2) P (Ze2) ztet

X= 3 m2c3uyg "Th 3
Compare this to eq (15.30)/N.

Eq.(15.30)/JN =—-Z (_) Zhet
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2. 14.11 (a)
a) Using Eq.

(14.24) for the relativistic power radiated and letting
e — ze,

2 (4t

2
P__§m203 dr dT)’ dr = dt/y

And from Eq. (11.125)

d_ﬁ—f(uoﬁmxg)

dr ¢
dpo 2€= =
dr ¢ E
where
U = (ye,v¥) = p*/m
Or
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2. 1412
a) From Jackson, Eq (14.38)

o e {(x[0-Hxp]}
dQ  4nc (1_ﬁ,ﬁ)5

Using azimuthal symmetry, we can choose f in the x-z plane.

b

N
-

From the figure

i = cosfz+ sin X

Bt = ~2wosinwot'z = —Bsinwot'z

2

. awn . R
B(t') = ——2 coswot'2 = —wofcoswot'2

Using Bx B =0
{ﬁx [(ﬁ—ﬁ) xﬁ]}z = (ﬁxﬁ)z
and
Ax B = woBsindcoswot’
So

e’cp*®  sin®0coslmot’
4ra* (1 + Beoshsinmot’)’

dP 1y _

Defining ¢ = wot/,



e’cp* 1 J‘Zﬂ sin%0 cos?¢

dP ¢y = 1
Caa®) 4ra? 27 Jo (1+ Bcosfsing)

5 ¢

Or, doing the integral,

P e’cp* 4+ B%cos?d

dP \ _ in2
<dQ> 327[3.2 (1—ﬂ2C0520)7/2 sin“0

4+.052 cos?6 in2
) (1-.052 cos?0) 2 sn“f

0.5 1 15 2 25 3

4+.952 cos?6

: 2
—2 WY gn“h
(1-.952 cos?0) "2

300 7]

250 1

200 1

150 1]

100 1]

50

0.5 1 15 2 25 3
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4. 14.14
a) We can start with the result derived in problem 14.13. For simplicity
of notation, I’'m going to use w, rather than wy, for the fundamental frequency

2

P 2 4.2 27 Jw
Py _ cwm / v(t) x aeime (t=254) gy
0

Q. (2me)

I will choose the coordinate system so that the particle moves in the 2 di-
rection and azimuthal symmetry allows me to choose 7 in the x - z plane, so
-2 = cosf. Also I'm going to choose the zero of time by requiring that the
particle be at the origin at ¢ = 0. Thus

Z(t) = 2asinwt

- Z(t) = 2a cosfsinwt
¥(t) x i = —wasin 6 cos wtj
27 fw ) A-E(E) 2m ) _ .
/ 17(12) X ,ﬁesz(t— c )dt = wasinf— / cos peiME—imasinz j..
0 0

where z = wt and o = 2% cosf) = (3 cos . Note the identity

27 . i . 271_
/ cos petmETIme S‘”dx‘ = —Jm(ma).
0 a

Then

2ma

27 fw ) P
/ u(t) x feime(t= 252 gy = 3 tan 0.J,,(ma).
0

So
dPn  *w'm? < 2ma
aQ (2mc)® \ B

Since w = ¢f/a, the above can be written

2
) tan? 0.J2, (m cos 0)

P,  ecf
dd_Q = 62 652 m? tan? §.J2 (mf cos 0)
s
b) We remember that

If £ = mBcos 6, then only the lowest m (m = 1) will dominate as f — 0. So

AP _ dPi _ ecf?

2072
0 - 40" 9rd tan® 0J; (0 cos 9)




Or

Using

Letting 6 =

noting that

then

wa

c

s = ()
P =g
— %a2 /OT sin? wtdt = %az

2, 4
2e“w” _,
3c3
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1. 16.1 It’s useful to apply in this case the Virial Theorem, familiar from classical mechanics:

(= 39

If V=ar", then
-n
() = 2<V>
Inour case V = +kr?, with k = mo§, son = 2 and
(M =«V)
Or,
avy _ E
( dr ) =T
We are given

This can be rewritten

d _ ¢
G = TikE
So
E = Eoe ™K = Ege ™t = Epe ™!
Similarly,
dl _ 1dv.p
o - gt

But +4 = mwj, so
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2.162V=-q=-e

dE _ _L<(ﬂ)2>

d  Mildr

If V = ar", then the Virial theorem tells us
- n
(M) = DV)
In the present case, n = -1, so

E = (T)+(V) = 2wy = -2

av _ Ze?
dr r2
Now
dE _ _z ,(dVv)?
dt m<( dr ) )
gives
d 1 _ 27¢%
drr(t)  mré)
or

r2dr = —2Ze?rdt/m

Butt = %% S0

r2dr = —BZ(CT)3%
Integrating both sides gives
r3(t) = r3 - 9Z(cr)’ L

b) At this point, for simplicity of notation, I’m going to take ¢ = # = 1. Then from problem
14.21,

1 _ 27:2y4 M
T 3e(Ze) 5

We are given

r— nzao
Z

&2

m

Where ap = # = Bohr radius, and 7 =

w|n



_On ___Z d __Z 3
dt 2apn dt 2aon 2ZT

in agreement with the result of problem 14.21.
c) From part b)

t— rg—ri
9772

2
Butr(t) = M2 ry = N2

Inour presentcaseZ = 1, s0

3 né_nb
_l( 1 ) (2e2 f2 _ 4]r.ne—1o(n6 ng)

In these units, (from the particle data book) MeV 1 =
m = 207 x.511MeV.

1x6.6x10%*s

= né —nd) = 7.53 x 107 4(nf — né)s
4 x 207 ><.511(1/137)5( F ) * (07 =n%)

For the cases desired,

t; = 7.53 x 10714(106 — 4%)s=7. 5 x 1085

t, = 7.53 x 1074(10° - 1%)s=7.5300 x 108s

Just as a check on working with these units, notice

_28 _2

2
Z Z 2
2apn 3( agh? ) Z( 3

22 24
3m—3—511 13766><1O S=6.29x 10“*s

in agreement with what we found before.

= 6.6x10%s. €2 = ¢ = 1/137, and
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