

Señales

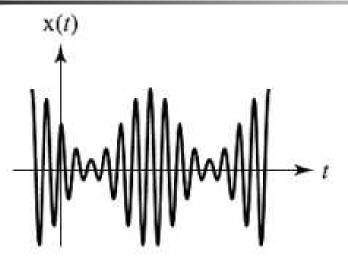
- Las señales son funciones de variables independientes, portadoras de información
- Señales eléctricas: tensiones y corrientes en un circuito
- Señales acústicas: audio
- Señales de video: variación de la intensidad
- Señales biológicas: secuencias de bases de un gen

4

Variables independientes

- Pueden ser continuas
- Pueden ser discretas
- ➤ Pueden ser 1-D, 2-D.....N-D
- > Para este curso: tiempo. Var. Indep.1-D
- tiempo continuo (TC) x(t) t toma valores continuos
- tiempo discreto (TD) x[n] n toma valores enteros

Señales en TC: analógicas

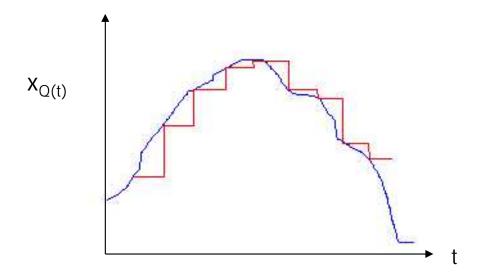


Amplitud y tiempo continuos - x(t)

t valores contínuos

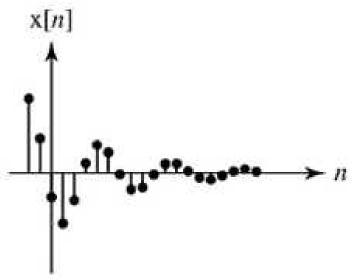
La mayoría de las señales del mundo físico son del tipo TC. Por ej. tensión, corriente, presión, temperatura y velocidad

Señales cuantizadas



Tiempo continuo, amplitud discreta. La amplitud solo toma determinados valores.

Señales en TD : muestreadas



Muestreadas: tiempo discreto amplitud continua - x[n]

n --- valores enteros

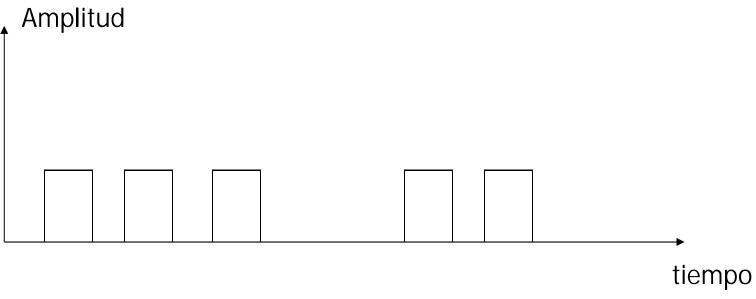
Señales en TD en la naturaleza

- Secuencia de bases ADN
- ▶ Población de especies

En TD hechas por el hombre

- ▶Imagen digital
- ► Interés bancario

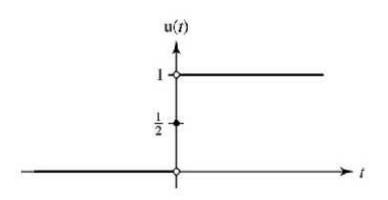
Digitales

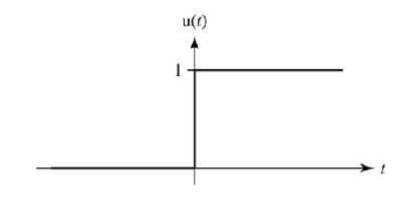


Discreta en amplitud y en tiempo

FUNCIONES DE SEÑALES EN TIEMPO CONTINUO

Función escalón



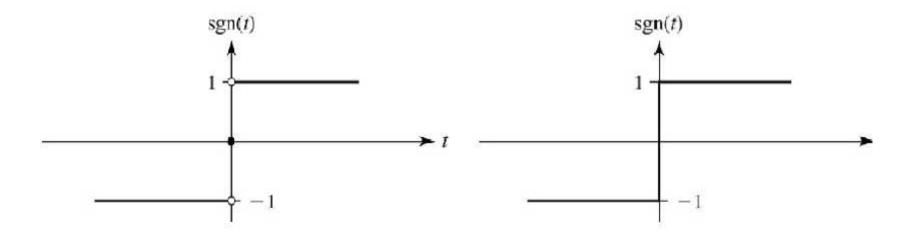


$$u(t) = \begin{cases} 1 & t > 0 \\ \frac{1}{2} & t = 0 \\ 0 & t < 0 \end{cases}$$

$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

4

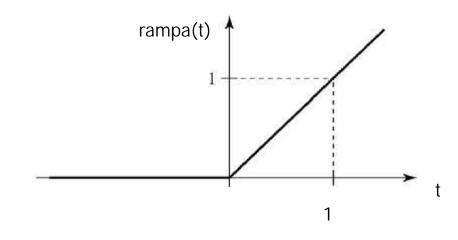
Función signo



$$u(t) = \begin{cases} 1 & t > 0 \\ 0 & t = 0 \\ -1 & t < 0 \end{cases}$$

$$u(t) = \begin{cases} 1 & t \ge 0 \\ -1 & t < 0 \end{cases}$$

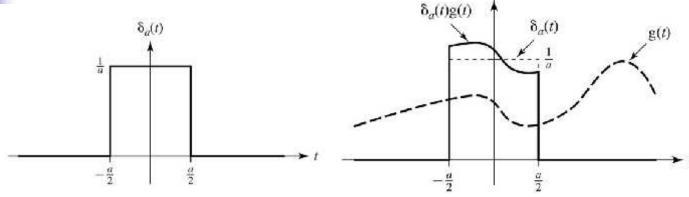
Función rampa unitaria



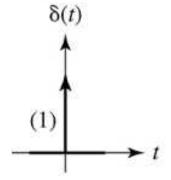
La función rampa en TC es la integral de la función escalón unitario

$$rampa(t) = \begin{cases} t & t > 0 \\ 0 & t \le 0 \end{cases} = \int_{-\infty}^{t} u(\ddagger) d\ddagger = tu(t)$$

Función impulso unitario

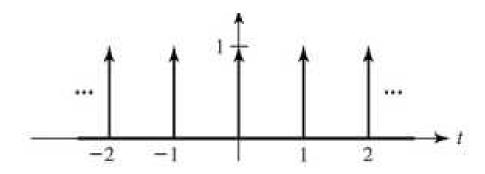


$$A = \int_{-\infty}^{\infty} u_{a}(t)g(t) dt = \frac{1}{a} \int_{-a/2}^{a/2} g(t) dt$$



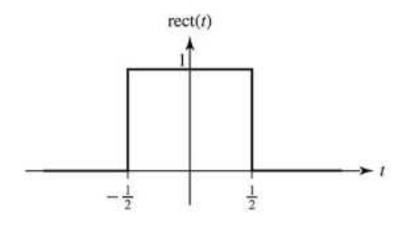
$$\lim_{a \to 0} A = g(0) \lim_{a \to 0} \frac{1}{a} \int_{-a/2}^{a/2} dt = g(0) \lim_{a \to 0} \frac{1}{a} \cdot a = g(0)$$

Tren de impulsos unitarios



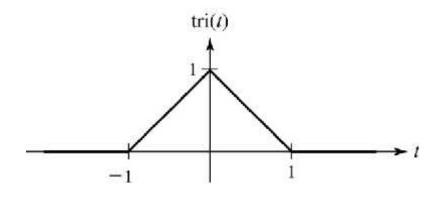
$$x(t) = \sum_{n=-\infty}^{+\infty} u(t-n.1)$$

Función rectángulo unitario



$$rect(t) = \begin{cases} 1 & |t| \le 1/2 \\ 0 & |t| > 1/2 \end{cases}$$

Función triángulo unitario



$$tri(t) = \begin{cases} 1 - |t| & |t| < 1 \\ 0 & |t| \ge 1 \end{cases}$$

Función sinc unitaria

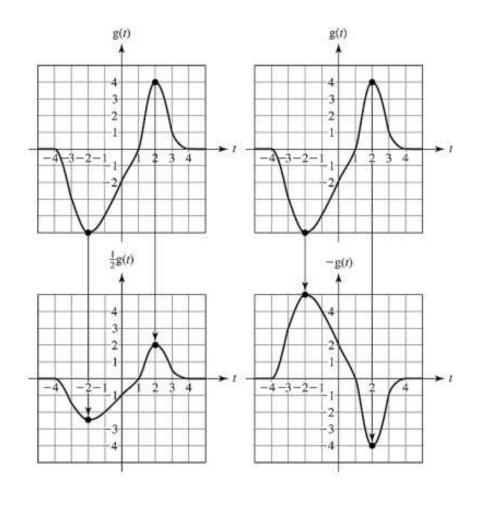


$$\operatorname{sinc}(t) = \frac{\operatorname{sen}(f \ t)}{f \ t}$$

Transformaciones de la variable independiente

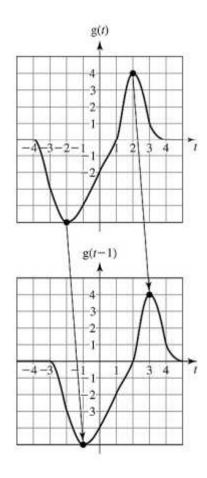
- Escalamiento de amplitud
- Desplazamiento en el tiempo
- Escalamiento en el tiempo
- > Transformaciones múltiples

Escalamiento en amplitud



$$g(t) \longrightarrow Ag(t)$$

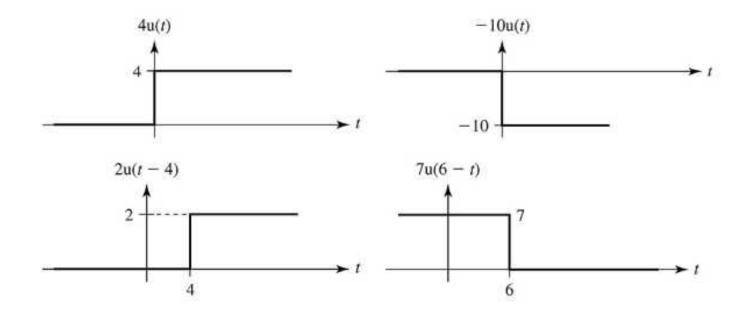
Desplazamiento en el tiempo



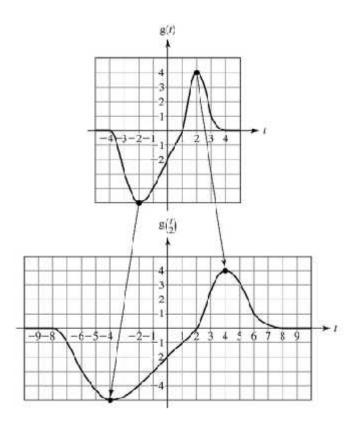
+		t_1
L		L I

t	t-1	g(t-1)
-3	-4	0
-2	-3	-3
-1	-2	-5
0	-1	-4
1	0	-2
2	1	0
3	2	4

Ej. Funciones escalón transformadas



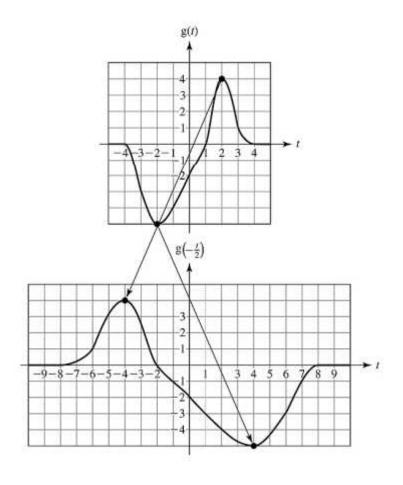
Escalamiento en el tiempo



	. ,
+	 +/~
	1/
L	L/ C

t	t/2	g(t/2)
-4	-2	-5
-2	-1	-4
0	0	-2
2	1	0
4	2	4

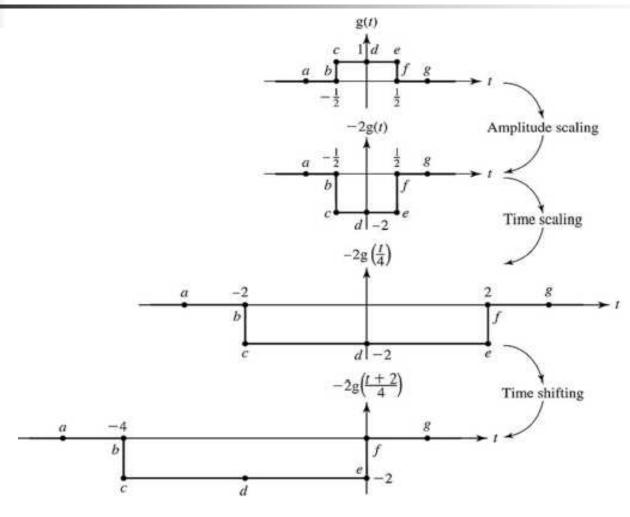
Escalamiento en el tiempo



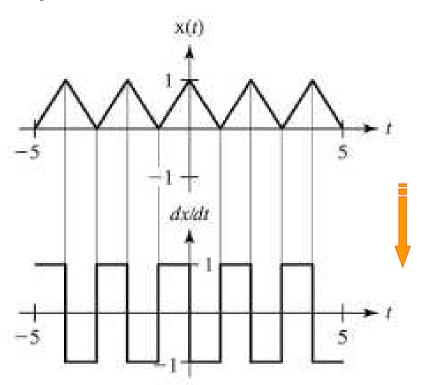
t		_	t /	7
ι		_	l/	

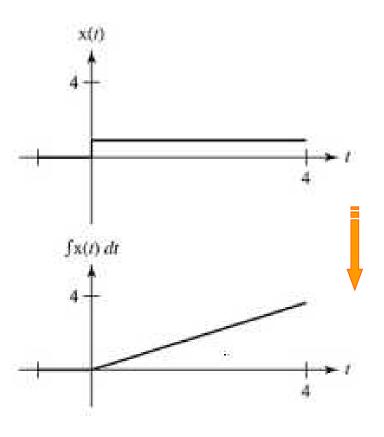
t	-t/2	g(-t/2)
-4	2	4
-2	1	0
0	0	-2
2	-1	-4
4	-2	-5

Transformaciones múltiples



Diferenciación e Integración



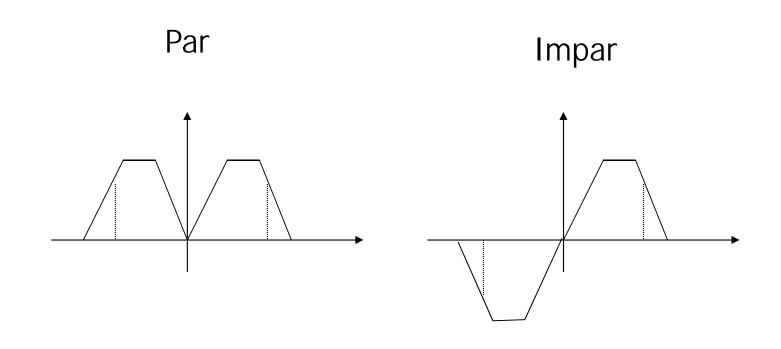


1

Funciones Par e Impar en TC

- \rightarrow Función par g(t)=g(-t)
- Función impar \longrightarrow g(t)=-g(-t)
- Una forma de reconocer una función par, el eje de las ordenadas es un espejo.
- Para una función impar las mismas dos imágenes son en espejo negativas una de otra.

Funciones Par e Impar en TC



Ni Par Ni Impar

✓ Cualquier función g(t), incluso si no es par ni impar, puede expresarse como la suma de sus partes par e impar:

$$g_e(t) = \frac{g(t) + g(-t)}{2}$$
 $g_o(t) = \frac{g(t) - g(-t)}{2}$

$$g(t) = g_e(t) + g_o(t)$$

4

Funciones periódicas en TC

- Una función g(t) es periódica si
- $\mathfrak{g}(t)=g(t+nT)$
- Para cualquier valor entero de n donde T es el período de la función.
- El intervalo mínimo positivo para el cual se repite la función es el período fundamental T_{o.}
- ❖ La frecuencia fundamental f_o=1/T_o ciclos/seg ó Hz (Hertz)
- * La frecuencia fundamental en radianes por segundo $\omega_o = 2\pi f_o$.

Ej. $f(t) = \cos w_1 t + \cos w_2 t$

✓ Si la función es periódica con período T, entonces es posible encontrar dos enteros m y n tales que

$$\checkmark \qquad w_1 T = 2\pi m \qquad w_1 / w_2 = m / n$$

$$\checkmark$$
 $W_2T = 2\pi n$

✓ Es decir la relación w₁/w₂ debe ser un número racional.

4

Señales periódicas exponencial compleja y senoidal

✓ Consideremos la siguiente exponencial compleja :

$$x(t) = e^{jw_0t}$$

✓ Propiedad importante: es periódica

$$e^{j_{w_0}t} = e^{j_{w_0}(t+T)} = e^{j_{w_0}t} e^{j_{w_0}T}$$

✓ Para ser periódica

$$e^{j_{w_0}T}=1$$

Señales exponenciales y senoidales

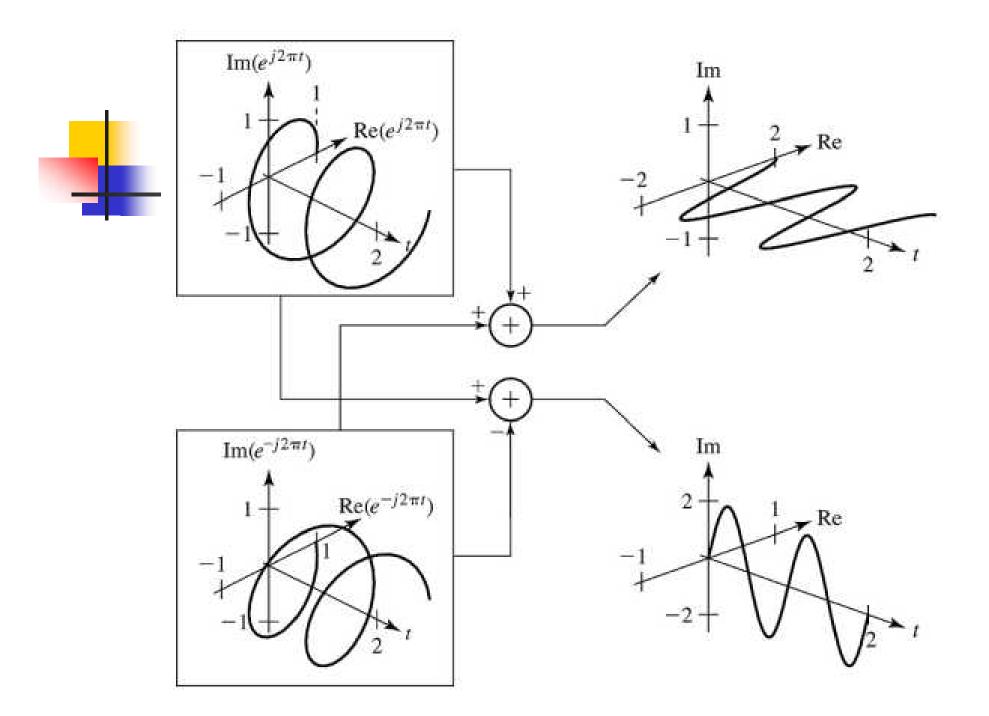
- ✓ Si Š $_0$ = 0 entonces x(t) = 1 periódica para cualquier valor de T.
- ✓ Si Š $_0 \neq 0$ entonces el período fundamental T_0 , el valor positivo más pequeño de T que cumple con $\underset{-}{\not=}$

Recordando relación : exponencial compleja señal senoidal

$$e^{j\S_{0}t} = \cos\S_{0}t + j sen\S_{0}t$$

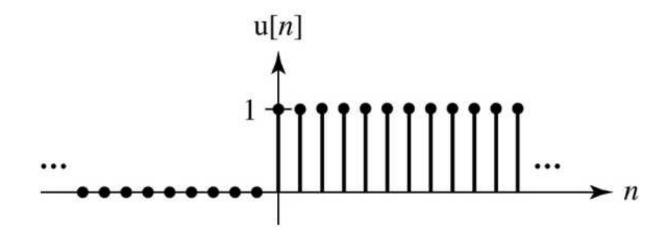
$$\cos\S_{0}t = \frac{e^{j\S_{0}t} + e^{-j\S_{0}t}}{2} = Re\{e^{j\S_{0}t}\}$$

$$sen\S_{0}t = \frac{e^{j\S_{0}t} - e^{-j\S_{0}t}}{2} = Im\{e^{j\S_{0}t}\}$$



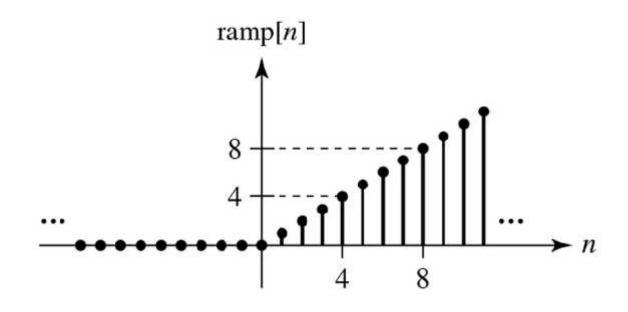
FUNCIONES DE SEÑALES EN TIEMPO DISCRETO

Secuencia unitaria



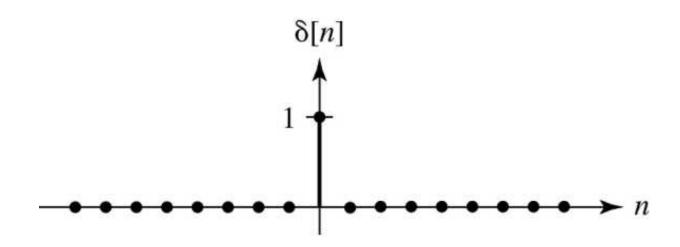
$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Función rampa unitaria



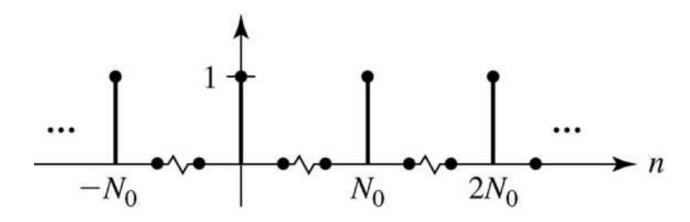
$$rampa[n] = \begin{cases} n & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Impulso unitario



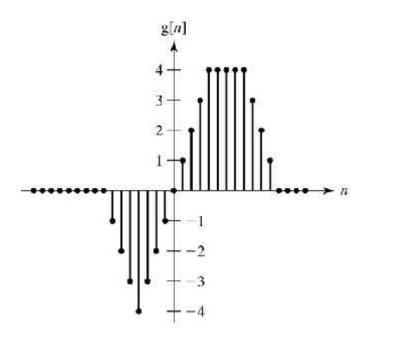
$$\mathsf{u}\left[n\right] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

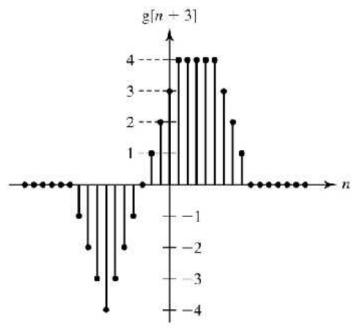
Tren de impulsos unitarios



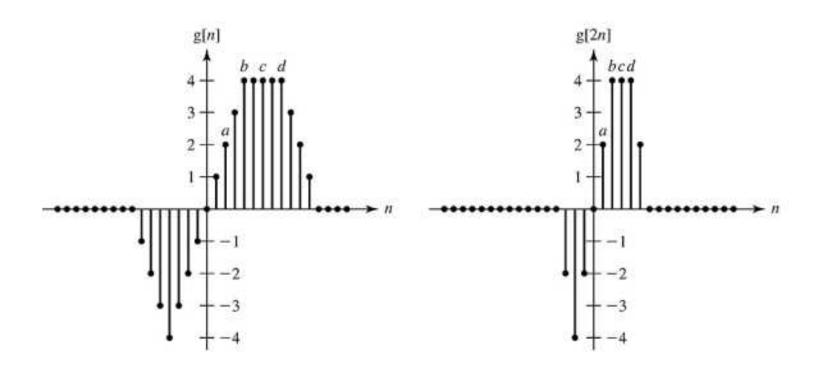
$$x[n] = \sum_{n=-\infty}^{+\infty} \mathbf{u} \left[n - m \, N_0 \right]$$

Desplazamiento en TD





Escalamiento en TD

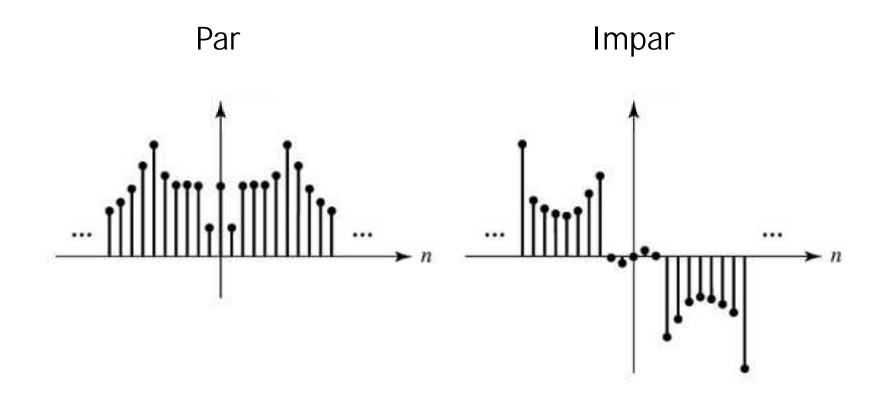


Funciones Par e Impar en TD

- \triangleright Es par si \Longrightarrow g[n]=g[-n]
- \triangleright Es impar si \Longrightarrow g[n]=-g[-n]
- > Igual que en TC, definimos

$$g_e[n] = \frac{g[n] + g[-n]}{2}$$
 $g_o[n] = \frac{g[n] - g[-n]}{2}$

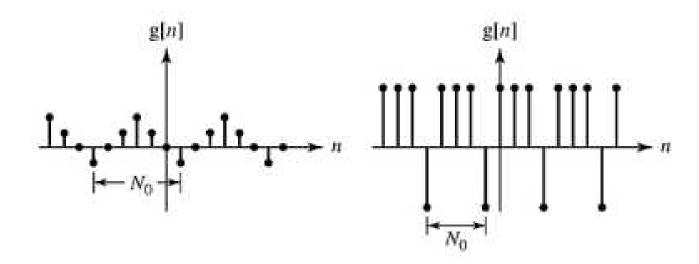
Ejemplos



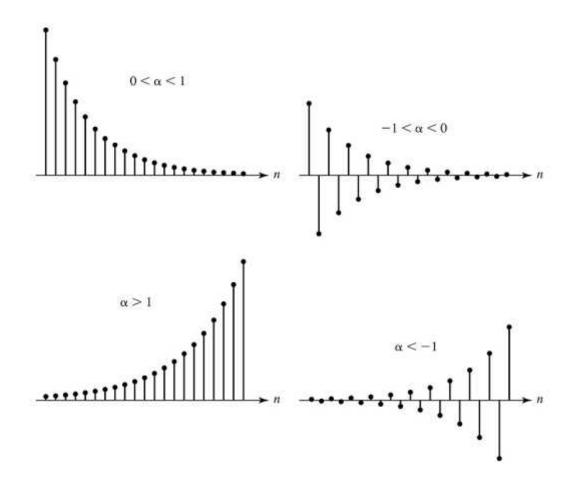
Funciones periódicas en TD

- Una función g[n] es periódica si
- \rightarrow g[n]=g[n+mN]
- Para cualquier valor entero de m donde N es el período de la función.
- ➤ El intervalo mínimo positivo para el cual se repite la función es el período fundamental N_{o.}
- ➤ La frecuencia fundamental f_o=1/N_o ciclos/muestra
- La frecuencia fundamental en radianes por muestra $ω_o = 2πf_o$.

Funciones periódicas en TD



Exponencial real en TD



$$x[n] = C r^n$$

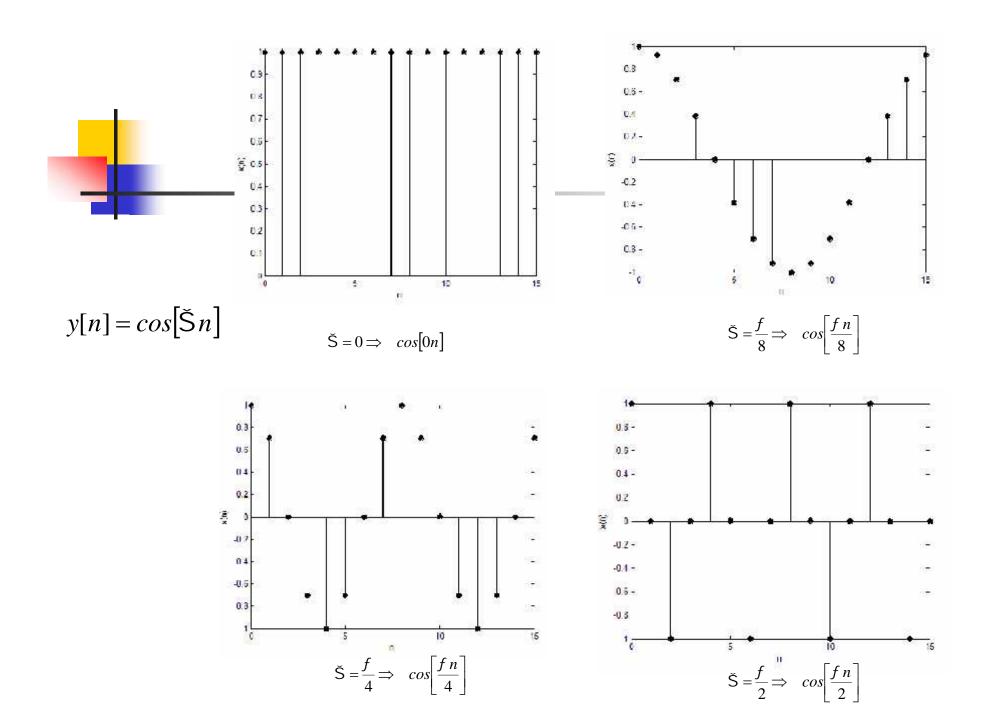
Periodicidad de exponenciales discretas(1)

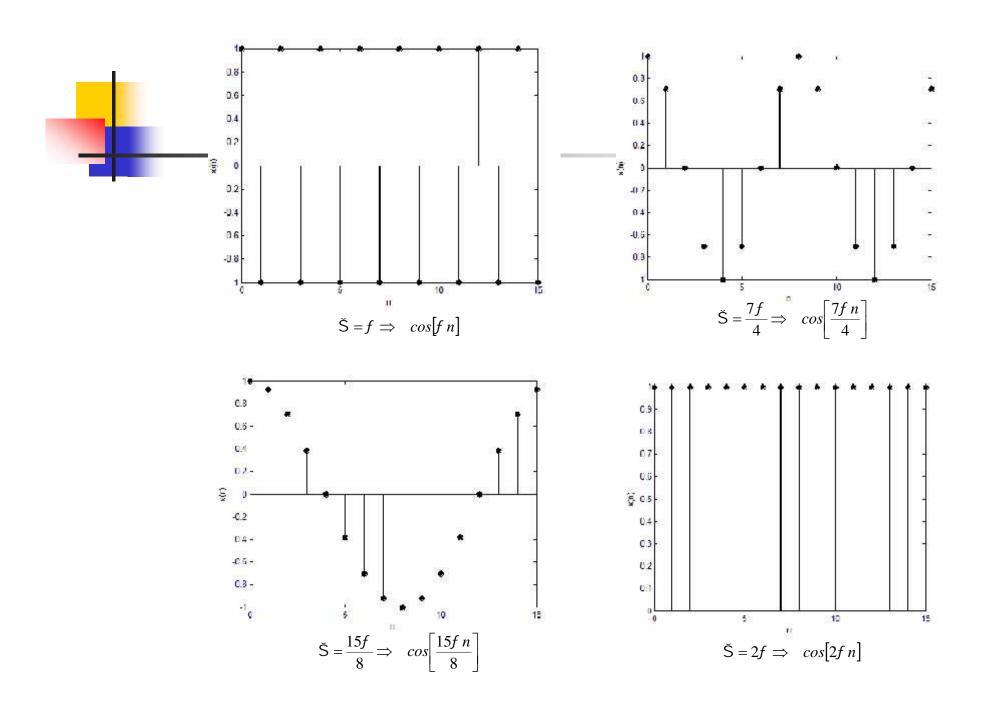
- Para tiempo continuo vimos dos propiedades de $e^{j \tilde{S}_0 t}$
- Mientras más grande la magnitud de w₀ mayor será la velocidad de oscilación de la señal.
- Es periódica para cualquier valor de w_{0.}
- Veamos estas propiedades en TD

Periodicidad de exponenciales discretas(2)

$$e^{j(\S_0+2f)n} = e^{j2f n} e^{j\S_0 n} = e^{j\S_0 n}$$

Vemos que la exponencial $w_0+2\pi$ es la misma con frecuencia w_0 . Diferente al caso contínuo, donde las señales son distintas para distintas w_0 . Por lo tanto al considerar exponenciales complejas, necesitamos solamente tomar el intervalo de frecuencia de longitud 2π dentro del cual se escoge w_0 . Conforme w_0 se incrementa desde 0, la señal oscila más rápido hasta π . Seguimos aumentando w_0 hasta 2π y la señal oscila más lento hasta producir la misma secuencia que en w=0.





Periodicidad de exponenciales discretas(3)

La segunda propiedad respecto de la periodicidad de la exponencial compleja discreta. Para ser periódica :

$$e^{j\S_0(n+N)} = e^{j\S_0n} \qquad e^{j\S_0N} = 1$$

- Debe haber un entero m tal que
- $w_0N = 2\pi m \quad w_0/2\pi = m/N$

De acuerdo con lo anterior, la exponencial es periódica si $w_0/2\pi$ es un número racional y es no periódica en otras circunstancias.

$e^{j \check{S}_{0} t}$	$e^{j \S_0 n}$
Señales distintas para distintos valores de w ₀	Señales idénticas para valores de w_0 separados 2π
Periódica para cualquier w _o	Periódica sólo si $w_0=2 \pi$ m/N con m y N enteros
Frecuencia fundamental w _o	Frecuencia fundamental w ₀ /m
Período fundamental 2π/w ₀	Período fundamental 2πm/w ₀