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1 Introduction

The implicit philosophical belief of the working mathematician is today the
Hilbert-Bourbaki formalism. Ideally, one works within a closed system:
the basic principles are clearly enunciated once for all, including (that is an
addition of twentieth century science) the formal rules of logical reasoning
clothed in mathematical form. The basic principles include precise defini-
tions of all mathematical objects, and the coherence between the various
branches of mathematical sciences is achieved through reduction to basic
models in the universe of sets. A very important feature of the system is its
non-contradiction ; after Gödel, we have lost the initial hopes to establish
this non-contradiction by a formal reasoning, but one can live with a corre-
sponding belief in non-contradiction. The whole structure is certainly very
appealing, but the illusion is that it is eternal, that it will function for ever
according to the same principles. What history of mathematics teaches us is
that the principles of mathematical deduction, and not simply the mathe-
matical theories, have evolved over the centuries. In modern times, theories
like General Topology or Lebesgue’s Integration Theory represent an almost
perfect model of precision, flexibility and harmony, and their applications,
for instance to probability theory, have been very successful.

My thesis is: there is another way of doing mathematics, equally
successful, and the two methods should supplement each other and
not fight.

This other way bears various names: symbolic method, operational calcu-
lus, operator theory . . . Euler was the first to use such methods in his exten-
sive study of infinite series, convergent as well as divergent. The calculus of
differences was developed by G. Boole around 1860 in a symbolic way, then
Heaviside created his own symbolic calculus to deal with systems of differen-
tial equations in electric circuitry. But the modern master was R. Feynman
who used his diagrams, his disentangling of operators, his path integrals
. . . The method consists in stretching the formulas to their extreme conse-
quences, resorting to some internal feeling of coherence and harmony. They
are obvious pitfalls in such methods, and only experience can tell you that
for the Dirac δ-function an expression like xδ(x) or δ′(x) is lawful, but not
δ(x)/x or δ(x)2. Very often, these so-called symbolic methods have been sub-
stantiated by later rigorous developments, for instance Schwartz distribution
theory gives a rigorous meaning to δ(x), but physicists used sophisticated
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formulas in “momentum space” long before Schwartz codified the Fourier
transformation for distributions. The Feynman “sums over histories” have
been immensely successful in many problems, coming from physics as well
from mathematics, despite the lack of a comprehensive rigorous theory.

To conclude, I would like to offer some remarks about the word “for-
mal”. For the mathematician, it usually means “according to the standard
of formal rigor, of formal logic”. For the physicists, it is more or less synony-
mous with “heuristic” as opposed to “rigorous”. It is very often a source of
misunderstanding between these two groups of scientists.

2 A new look at the exponential

2.1 The power of exponentials

The multiplication of numbers started as a shorthand for repeated additions,
for instance 7 times 3 (or rather “seven taken three times”) is the sum of
three terms equal to 7

7× 3 = 7 + 7 + 7︸ ︷︷ ︸
3 times

.

In the same vein 73 (so denoted by Viete and Descartes) means 7× 7× 7︸ ︷︷ ︸
3 factors

.

There is no difficulty to define x2 as xx or x3 as xxx for any kind of multipli-
cation (numbers, functions, matrices . . . ) and Descartes uses interchangeably
xx or x2, xxx or x3.

In the exponential (or power) notation, the exponent plays the role of
an operator. A great progress, taking approximately the years from 1630 to
1680 to accomplish, was to generalize ab to new cases where the operational
meaning of the exponent b was much less visible. By 1680, a well defined
meaning has been assigned to ab for a, b real numbers, a > 0. Rather than to
retrace the historical route, we shall use a formal analogy with vector algebra.
From the original definition of ab as a × . . . × a (b factors), we deduce the
fundamental rules of operation, namely

(a× a′)b = ab × a′b, ab+b′ = ab × ab′ , (ab)b
′
= abb

′
, a1 = a. (1)

The other rules for manipulating powers are easy consequences of the rules
embodied in (1). The fundamental rules for vector algebra are as follows:

(v + v′).λ = v.λ+ v′.λ, v.(λ+ λ′) = v.λ+ v.λ′,

(v.λ).λ′ = v.(λλ′), v.1 = v. (2)
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The analogy is striking provided we compare the product a× a′ of numbers
to the sum v + v′ of vectors, and the exponentiation ab to the scaling v.λ of
the vector v by the scalar λ.

In modern terminology, to define ab for a, b real, a > 0 means that we
want to consider the set R×+ of real numbers a > 0 as a vector space over the
field of real numbers R. But to vectors, one can assign coordinates: if the
coordinates of the vector v(v′) are the vi(v

′
i), then the coordinates of v + v′

and v.λ are respectively vi + v′i and vi.λ. Since we have only one degree of
freedom in R×+, we should need one coordinate, that is a bijective map L
from R×+ to R such that

L(a× a′) = L(a) + L(a′). (3)

Once such a logarithm L has been constructed, one defines ab in such a way
that L(ab) = L(a).b. It remains the daunting task to construct a logarithm.
With hindsight, and using the tools of calculus, here is the simple definition
of “natural logarithms”

ln(a) =
∫ a

1
dt/t for a > 0. (4)

In other words, the logarithm function ln(t) is the primitive of 1/t which
vanishes for t = 1. The inverse function exp s (where t = exp s is synonymous
to ln(t) = s) is defined for all real s, with positive values, and is the unique
solution to the differential equation f ′ = f with initial value f(0) = 1. The
final definition of powers is then given by

ab = exp(ln(a).b). (5)

If we denote by e the unique number with logarithm equal to 1 (hence e =
2.71828 . . .), the exponential is given by exp a = ea.

The main character in the exponential is the exponent, as it
should be, in complete reversal from the original view where 2 in x2, or 3 in
x3 are mere markers.

2.2 Taylor’s formula and exponential

We deal with the expansion of a function f(x) around a fixed value x0 of x,
in the form

f(x0 + h) = c0 + c1h+ · · ·+ cph
p + · · · . (6)
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This can be an infinite series, or simply a finite order expansion (include then
a remainder). If the function f(x) admits sufficiently many derivatives, we
can deduce from (6) the chain of relations

f ′(x0 + h) = c1 + 2c2h+ · · ·
f ′′(x0 + h) = 2c2 + 6c3h+ · · ·
f ′′′(x0 + h) = 6c3 + 24c4h+ · · · .

By putting h = 0, deduce

f(x0) = c0, f ′(x0) = c1, f ′′(x0) = 2c2, . . .

and in general f (p)(x0) = p!cp. Solving for the cp’s and inserting into (6) we
get Taylor’s expansion

f(x0 + h) =
∑
p≥0

1

p!
f (p)(x0)hp. (7)

Apply this to the case f(x) = expx, x0 = 0. Since the function f is equal to
its own derivative f ′, we get f (p) = f for all p’s, hence f (p)(0) = f(0) = e0 = 1.
The result is

exph =
∑
p≥0

1

p!
hp. (8)

This is one of the most important formulas in mathematics. The idea is
that this series can now be used to define the exponential of large classes of
mathematical objects: complex numbers, matrices, power series, operators.
For the modern mathematician, a natural setting is provided by a complete
normed algebra A, with norm satisfying ||ab|| ≤ ||a|| · ||b||. For any element a
in A, we define exp a as the sum of the series

∑
p≥0 a

p/p!, and the inequality

||ap/p!|| ≤ ||a||p/p! (9)

shows that the series is absolutely convergent.
But this would not exhaust the power of the exponential. For instance,

if we take (after Leibniz) the step to denote by Df the derivative of f , D2f
the second derivative, etc. . . (another instance of the exponential notation!),
then Taylor’s formula reads as

f(x+ h) =
∑
p≥0

1

p!
hpDpf(x). (10)
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This can be interpreted by saying that the shift operator Th taking a
function f(x) into f(x+h) is equal to

∑
p≥0

1
p!
hpDp, that is, to the exponential

exphD (question: who was the first mathematician to cast Taylor’s formula
in these terms?). Hence the obvious operator formula Th+h′ = Th ·Th′ reads
as

exp(h+ h′)D = exphD · exph′D. (11)

Notice that for numbers, the logarithmic rule is

ln(a · a′) = ln(a) + ln(a′) (12)

according to the historical aim of reducing via logarithms the multiplications
to additions. By inversion, the exponential rule is

exp(a+ a′) = exp(a) · exp(a′). (13)

Hence formula (11) is obtained from (13) by substituting hD to a and h′D
to a′.

But life is not so easy. If we take two matrices A and B and calculate
exp(A+B) and expA · expB by expansion we get

exp(A+B) = I + (A+B) +
1

2
(A+B)2 +

1

6
(A+B)3 + · · · (14)

expA. expB = I + (A+B) +
1

2
(A2 + 2AB +B2)

+
1

6
(A3 + 3A2B + 3AB2 +B3) + · · · . (15)

If we compare the terms of degree 2 we get

1

2
(A+B)2 =

1

2
(A2 + AB +BA+B2) (16)

in (14) and not 1
2
(A2 +2AB+B2). Harmony is restored if A and B commute:

indeed AB = BA entails

A2 + AB +BA+B2 = A2 + 2AB +B2 (17)

and more generally the binomial formula

(A+B)n =
n∑
i=0

(
n
i

)
AiBn−i (18)
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for any n ≥ 0. By summation one gets

exp(A+B) = expA · expB (19)

if A and B commute, but not in general. The success in (11) comes
from the obvious fact that hD commutes to h′D since numbers commute to
(linear) operators.

2.3 Leibniz’s formula

Leibniz’s formula for the higher order derivatives of the product of two func-
tions is the following one

Dn(fg) =
n∑
i=0

(
n
i

)
Dif.Dn−ig. (20)

The analogy with the binomial theorem is striking and was noticed early.
Here are possible explanations. For the shift operator, we have

Th = exphD (21)

by Taylor’s formula and

Th(fg) = Thf ·Thg (22)

by an obvious calculation. Combining these formulas we get

∑
n≥0

1

n!
hnDn(fg) =

∑
i≥0

1

i!
hiDif.

∑
j≥0

1

j!
hjDjg; (23)

equating the terms containing the same power hn of h, one gets

Dn(fg) =
∑
i+j=n

n!

i!j!
Dif ·Djg (24)

that is, Leibniz’s formula.
Another explanation starts from the case n = 1, that is

D(fg) = Df · g + f ·Dg. (25)
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In a heuristic way it means that D applied to a product fg is the sum of two
operators D1 acting on f only and D2 acting on g only. These actions being
independent, D1 commutes to D2 hence the binomial formula

Dn = (D1 + D2)n =
n∑
i=0

(
n
i

)
Di

1 ·Dn−i
2 . (26)

By acting on the product fg and observing that Di
1 ·D

j
2 transforms fg into

Dif ·Djg, one recovers Leibniz’s formula. In more detail, to calculate D2(fg),
one applies D to D(fg). Since D(fg) is the sum of two terms Df · g and
f · Dg apply D to Df · g to get D(Df)g + Df · Dg and to f · Dg to get
Df ·Dg + f ·D(Dg), hence the sum

D(Df) · g + Df ·Dg + Df ·Dg + f ·D(Dg)

= D2f · g + 2Df ·Dg + f ·D2g.

This last proof can rightly be called “formal” since we act on the formulas,
not on the objects: D1 transforms f ·g into Df ·g but this doesn’t mean that
from the equality of functions f1 · g1 = f2 · g2 one gets Df1 · g1 = Df2 · g2

(counterexample: from fg=gf , we cannot infer Df ·g = Dg ·f). The modern
explanation is provided by the notion of tensor products: if V and W are two
vector spaces (over the real numbers as coefficients, for instance), equal or
distinct, there exists a new vector space V ⊗W whose elements are formal
finite sums

∑
i λi(vi ⊗ wi) (with scalars λi and vi in V , wi in W ); we take

as basic rules the consequences of the fact that v ⊗ w is bilinear in v, w,
but nothing more. Taking V and W to be the space C∞(I) of the functions
defined and indefinitely differentiable in an interval I of R, we define the
operators D1 and D2 in C∞(I)⊗ C∞(I) by

D1(f ⊗ g) = Df ⊗ g, D2(f ⊗ g) = f ⊗Dg. (27)

The two operators D1D2 and D2D1 transform f ⊗ g into Df ⊗Dg, hence
D1 and D2 commute. Define D̄ as D1 + D2 hence

D̄(f ⊗ g) = Df ⊗ g + f ⊗Dg. (28)

We can now calculate D̄n = (D1 + D2)n by the binomial formula as in (26)
with the conclusion

D̄n(f ⊗ g) =
n∑
i=0

(
n
i

)
Dif ⊗Dn−ig. (29)
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The last step is to go from (29) to (20). The rigorous reasoning is as
follows. There is a linear operator µ taking f ⊗ g into f · g and mapping
C∞(I)⊗C∞(I) into C∞(I); this follows from the fact that the product f · g
is bilinear in f and g. The formula (25) is expressed by D ◦ µ = µ ◦ D̄ in
operator terms, according to the diagram:

C∞(I)⊗ C∞(I)
µ−→ C∞(I)

D̄ ↓ ↓ D

C∞(I)⊗ C∞(I)
µ−→ C∞(I).

An easy induction entails Dn ◦ µ = µ ◦ D̄n, and from (29) one gets

Dn(fg) = Dn(µ(f ⊗ g)) = µ(D̄n(f ⊗ g))

= µ(
n∑
i=0

(
n
i

)
Dif ⊗Dn−ig) =

n∑
i=0

(
n
i

)
Dif ·Dn−ig. (30)

In words: first replace the ordinary product f · g by the neutral
tensor product f ⊗ g, perform all calculations using the fact that
D1 commutes with D2, then restore the product · in place of ⊗.

When the vector spaces V and W consist of functions of one variable,
the tensor product f ⊗ g can be interpreted as the function f(x)g(y) in
two variables x, y; moreover D1 = ∂/∂x, D2 = ∂/∂y and µ takes a function
F (x, y) of two variables into the one-variable function F (x, x) hence f(x)g(y)
into f(x)g(x) as it should. Formula (25) reads now

∂

∂x
(f(x)g(x)) =

(
∂

∂x
+

∂

∂y

)
f(x)g(y)

∣∣∣
y=x

. (31)

The previous “formal” proof is just a rephrasing of a familiar proof using
Schwarz’s theorem that ∂

∂x
and ∂

∂y
commute.

Starting from the tensor product H1 ⊗H2 of two vector spaces, one can
iterate and obtain

H1 ⊗H2 ⊗H3, H1 ⊗H2 ⊗H3 ⊗H4, . . . .

Using once again the exponential notation, H⊗n is the tensor product of n
copies of H, with elements of the form

∑
λ · (ψ1 ⊗ . . . ⊗ ψn). In quantum

physics, H represents the state vectors of a particle, and H⊗n represents the
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state vectors of a system of n independent particles of the same kind. If H is
an operator in H representing for instance the energy of a particle, we define
n operators Hi in H⊗n by

Hi(ψ1 ⊗ . . .⊗ ψn) = ψ1 ⊗ · · · ⊗Hψi ⊗ · · · ⊗ ψn (32)

(the energy of the i-th particle). Then H1, . . . , Hn commute pairwise and
H1 + · · · + Hn is the total energy if there is no interaction. Usually, there
is a pair interaction represented by an operator V in H⊗H; then the total
energy is given by

∑n
i=1 Hi +

∑
i<j Vij with

V12(ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn) = V (ψ1 ⊗ ψ2)⊗ ψ3 ⊗ · · · (33)

V23(ψ1 ⊗ · · · ⊗ ψn) = ψ1 ⊗ V (ψ2 ⊗ ψ3)⊗ · · · ⊗ ψn (34)

etc. . . There are obvious commutation relations like

HiHj = HjHi

HiVjk = VjkHi if i, j, k are distinct.

This is the so-called “locality principle”: if two operators A and B refer to
disjoint collections of particles (a) for A and (b) for B, they commute.

Faddeev and his collaborators made an extensive use of this notation
in their study of quantum integrable systems. Also, Hirota introduced his
so-called bilinear notation for differential operators connected with classical
integrable systems (solitons).

2.4 Exponential vs. logarithm

In the case of real numbers, one usually starts from the logarithm and invert
it to define the exponential (called antilogarithm not so long ago). Positive
numbers have a logarithm; what about the logarithm of −1 for instance?

Things are worse in the complex domain. For a complex number z, define
its exponential by the convergent series

exp z =
∑
n≥0

1

n!
zn. (35)

From the binomial formula, using the commutativity zz′ = z′z one gets

exp(z + z′) = exp z · exp z′ (36)
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as before. Separating real and imaginary part of the complex number z =
x+ iy gives Euler’s formula

exp(x+ iy) = ex(cos y + i sin y) (37)

subsuming trigonometry to complex analysis. The trigonometric lines are the
“natural” ones, meaning that the angular unit is the radian (hence sin δ ' δ
for small δ).

From an intuitive view of trigonometry, it is obvious that the points of a
circle of equation x2 + y2 = R2 can be uniquely parametrized in the form

x = R cos θ, y = R sin θ (38)

with−π < θ ≤ π, but the subtle point is to show that the geometric definition
of sin θ and cos θ agree with the analytic one given by (37). Admitting this,
every complex number u 6= 0 can be written as an exponential exp z0, where
z0 = x0 + iy0, x0 real and y0 in the interval ]− π, π]. The number z0 is called
the principal determination of the logarithm of u, denoted by Ln(u). But
the general solution of the equation exp z = u is given by z = z0 + 2πin
where n is a rational integer. Hence a nonzero complex number has infinitely
many logarithms. The functional property (36) of the exponential cannot be
neatly inverted: for the logarithms we can only assert that Ln(u1 · · ·up) and
Ln(u1) + . . .+ Ln(up) differ by the addition of an integral multiple of 2πi.

The exponential of a (real or complex) square matrix A is defined by the
series

expA =
∑
n≥0

1

n!
An. (39)

There are two classes of matrices for which the exponential is easy to com-
pute:

a) Let A be diagonal A = diag(a1, . . . , an). Then expA is diagonal with
elements exp a1, . . . , exp an. Hence any complex diagonal matrix with non
zero diagonal elements is an exponential, hence admits a logarithm, and even
infinitely many ones.

b) Suppose that A is a special upper triangular matrix, with zeroes on
the diagonal, of the type

A =


0 a b c

0 d e
0 f

0

 .
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Then Ad = 0 if A is of size d × d. Hence expA is equal to I + B where B
is of the form A + 1

2
A2 + 1

6
A3 + · · ·+ 1

(d−1)!
Ad−1. Hence B is again a special

upper triangular matrix and A can be recovered by the formula

A = B − B2

2
+
B3

3
− · · ·+ (−1)d

Bd−1

d− 1
. (40)

This is just the truncated series for ln(I + B) (notice Bd = 0). Hence in
the case of these special triangular matrices, exponential and logarithm are
inverse operations.

In general, A can be put in triangular form A = UTU−1 where T is
upper triangular. Let λ1, . . . , λd be the diagonal elements of T , that is the
eigenvalues of A. Then

expA = U · expT · U−1 (41)

where expT is triangular, with the diagonal elements expλ1, . . . , expλd.
Hence

det(expA) =
d∏
i=1

expλi = exp
d∑
i=1

λi = exp(Tr(A)). (42)

The determinant of expA is therefore nonzero. Conversely any complex
matrix M with a nonzero determinant is an exponential: for the
proof, write M in the form UTU−1 where T is composed of Jordan blocks of
the form

Ts =


λ 1 . . 0
. . . .
0 . 1

. . . . λ

 with λ 6= 0 .

From the existence of the complex logarithm of λ and the study above of
triangular matrices, it follows that Ts is an exponential, hence T and M =
UTU−1 are exponentials.

Let us add a few remarks:
a) A complex matrix with nonzero determinant has infinitely many log-

arithms; it is possible to normalize things to select one of them, but the
conditions are rather artificial.

b) A real matrix with nonzero determinant is not always the exponential

of a real matrix; for example, choose M =

(
1 0
0 −1

)
. This is not surprising
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since −1 has no real logarithm, but many complex logarithms of the form
kπi with k odd.

c) The noncommutativity of the multiplication of matrices implies that
in general exp(A + B) is not equal to expA · expB . Here the logarithm of
a product cannot be the sum of the logarithms, whatever normalization we
choose.

2.5 Infinitesimals and exponentials

There are many notations in use for the higher order derivatives of a function
f . Newton uses ḟ , f̈ , . . ., the customary notation is f ′, f ′′, . . .. Once again, the
exponential notation can be systematized, f (m) or Dmf denoting the m-th
derivative of f , for m = 0, 1, . . .. This notation emphasizes that the derivation
is a functional operator, hence

(f (m))(n) = f (m+n), or Dm(Dnf) = Dm+nf. (43)

In this notation, it is cumbersome to write the chain rule for the derivative
of a composite function

D(f ◦ g) = (Df ◦ g) ·Dg. (44)

Leibniz’s notation for the derivative is dy/dx if y = f(x). Leibniz was
never able to give a completely rigorous definition of the infinitesimals dx, dy,
. . .1. His explanation of the derivative is as follows: starting from x, increment
it by an infinitely small amount dx; then y = f(x) is incremented by dy, see
Figure 1.

f(x+ dx) = y + dy. (45)

Then the derivative is f ′(x) = dy/dx, hence according to (45),

f(x+ dx) = f(x) + f ′(x)dx. (46)

This cannot be literally true, otherwise the function f(x) would be linear.
The true formula is

f(x+ dx) = f(x) + f ′(x)dx+ o(dx) (47)
1 In modern times, Abraham Robinson has vindicated them using the tools of formal logic. There

has been many interesting applications of his nonstandard analysis, but one has to admit that
it remains too cumbersome to provide a viable alternative to the standard analysis. Maybe in
the 21st century!
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dy

dx

dy

dx

y

x

zoom

Fig. 1. Geometrical description: an infinitely small portion of the curve y = f(x), after
zooming, becomes infinitely close to a straight line, our function is “smooth”, not fractal-like.

with an error term o(dx) which is infinitesimal, of a higher order than dx,
meaning o(dx)/dx is again infinitesimal. In other words, the derivative f ′(x),

independent of dx, is infinitely close to f(x+dx)−f(x)
dx

for all infinitesimals dx.
The modern definition, as well as Newton’s point of view of fluents, is a
dynamical one: when dx goes to 0, f(x+dx)−f(x)

dx
tends to the limit f ′(x).

Leibniz’s notion is statical: dx is a given, fixed quantity. But there is a hier-
archy of infinitesimals: η is of higher order than ε if η/ε is again infinitesimal.
In the formulas, equality is always to be interpreted up to an infinitesimal
error of a certain order, not always made explicit.

We use these notions to describe the logarithm and the exponential. By
definition, the derivative of lnx is 1

x
, hence

d lnx

dx
=

1

x
, that is ln(x+ dx) = ln(x) +

dx

x
.

Similarly for the exponential

d expx

dx
= exp x, that is exp(x+ dx) = (expx)(1 + dx).

This is a rule of compound interest. Imagine a fluctuating daily rate of inter-
est, namely ε1, ε2, . . . , ε365 for the days of a given year, every daily rate being
of the order of 0.0003. For a fixed investment C, the daily reward is Cεi for
day i, hence the capital becomes C + Cε1 + . . . + Cε365 = C · (1 +

∑
i εi),
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that is approximately C(1+ .11). If we reinvest every day our profit, invested
capital changes according to the rule:

Ci+1 = Ci + Ciεi = Ci(1 + εi).
↑ ↑ ↑

capital capital profit
at day i+ 1 at day i during day i

At the end of the year, our capital is C · ∏i(1 + εi). We can now formulate
the “bankers rule”:

if S = ε1 + . . .+ εN , then expS = (1 + ε1) · · · (1 + εN). (B)

Here N is infinitely large, and ε1, . . . , εN are infinitely small; in our example,
S = 0.11, hence exp S = 1 + S + 1

2
S2 + . . . is equal to 1.1163 . . .: by

reinvesting daily, the yearly profit of 11% is increased to 11.63%.
Formula (B) is not true without reservation. It certainly holds if all εi are

of the same sign, or more generally if
∑
i |εi| is of the same order as

∑
εi = x.

For a counter-example, take N = 2p2 with half of the εi being equal to +1
p
,

and the other half to −1
p

(hence
∑
i εi = 0 while

∏
i(1 + εi) is infinitely close

to 1/e = exp(−1)).
To connect definition (B) of the exponential to the power series expansion

expS = 1 + S + 1
2!
S2 + · · · one can proceed as follows: by algebra we get

N∏
i=1

(1 + εi) =
N∑
k=0

Sk, (48)

where S0 = 1, S1 = ε1 + . . .+ εN = S, and generally

Sk =
∑

i1<...<ik

εi1 · · · εik . (49)

We have to compare Sk to 1
k!
Sk = 1

k!
(ε1 + · · · + εN)k. Developing the k-

th power of S by the multinomial formula, we obtain Sk plus error terms
each containing at least one of the εi’s to a higher power, ε2i , ε

3
i , . . ., hence

infinitesimal compared to the εi’s. The general principle of compensation
of errors2 is as follows: given a sum of infinitesimals

Σ = η1 + · · ·+ ηM (50)
2 This terminology was coined by Lazare Carnot in 1797. Our formulation is more precise than

his!
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and new summands η′j = ηj + o(ηj) with an error o(ηj) of higher order than
ηj, we obtain that

Σ ′ = η′1 + · · ·+ η′M (51)

is equal to Σ plus an error term o(η1) + · · · + o(ηM). If the ηj are of the
same sign, the error is o(Σ), that is negligible compared to Σ.

Zoom
dx

x x+dx
Fig. 2. Leibniz’ continuum: by zooming, a finite segment of line is made of a large number of
atoms of space: a fractal.

The implicit view of the continuum underlying Leibniz’s calculus is as
follows: a finite segment of a line is made of an infinitely large number of
geometric atoms of space which can be arranged in a succession, each atom
x being separated by dx from the next one. Hence in the definition of the
logarithm

ln a =
∫ a

1

dx

x
(for a > 1), (52)

we really have
∑

1≤x≤a
dx
x

. Similarly, the bankers rule (B) should be inter-
preted as

exp a =
∏

0≤x≤a
(1 + dx) (for a > 0). (53)

2.6 Differential equations

The previous formulation of the exponential suggests a method to solve a
differential equation, for instance y′ = ry. In differential form

dy = r(x)ydx, (54)

that is

y + dy = (1 + r(x)dx)y. (55)
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The solution is

y(b) =
∏

a≤x≤b
(1 + r(x)dx) · y(a). (56)

What is the meaning of this product? Putting ε(x) = r(x)dx, an infinitesimal,
and expanding the product as in (48), we get∏

x

(1 + ε(x)) =
∑
k≥0

∑
a≤x1<...<xk≤b

ε(x1) · · · ε(xk); (57)

reinterpreting the multiple sum as a multiple integral, this is

∑
k≥0

∫
· · ·

∫
∆k

r(x1) · · · r(xk)dx1 · · · dxk. (58)

The domain of integration ∆k is given by the inequalities

a ≤ x1 ≤ x2 ≤ . . . ≤ xk ≤ b. (59)

The classical solution to the differential equation y′ = ry is given by

y(b) = (exp
∫ b

a
r(x)dx) · y(a). (60)

Let us see how to go from (58) to (60). Geometrically, consider the hypercube
Ck given by

a ≤ x1 ≤ b, · · · , a ≤ xk ≤ b (61)

in the euclidean space Rk of dimension k with coordinates x1, . . . , xk. The
group Sk of the permutations σ of {1, . . . , k} acts on Rk, by transforming
the vector x with coordinates x1, . . . , xk into the vector σ.x with coordinates
xσ−1(1), . . . , xσ−1(k). Then the cube Ck is the union of the k! transforms σ(∆k).
Since the function r(x1) . . . r(xk) to be integrated is symmetrical in the vari-
ables x1, . . . , xk and moreover two distinct domains σ(∆k) and σ′(∆k) overlap
by a subset of dimension < k, hence of volume 0, we see that the integral of
r(x1) · · · r(xk) over Ck is k! times the integral over ∆k. That is∫

· · ·
∫
∆k

r(x1) · · · r(xk)dx1 · · · dxk =

1

k!

∫ b

a
dx1 · · ·

∫ b

a
dxk r(x1) · · · r(xk) =

1

k!
(
∫ b

a
r(x)dx)k.
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Summing over k, and using the definition of an exponential by a series, we
conclude ∑

k≥0

∫
· · ·

∫
∆k

r(x1) · · · r(xk)dx1 · · · dxk = exp
∫ b

a
r(x)dx. (62)

as promised.
The same method applies to the linear systems of differential equations.

We cast them in the matrix form

y′ = A · y, (63)

that is the differential form

dy = A(x)ydx. (64)

Here A(x) is a matrix depending on the variable x, and y(x) is a vector (or
matrix) function of x. From (64) we get

y(x+ dx) = (I + A(x)dx)y(x). (65)

Formally the solution is given by

y(b) =
∏

a≤x≤b
(I + A(x)dx) · y(a). (66)

We have to take into account the noncommutativity of the products
A(x)A(y)A(z) . . . . Explicitly, if we have chosen intermediate points

a = x0 < x1 < . . . < xN = b,

with infinitely small spacing

dx1 = x1 − x0, dx2 = x2 − x1, . . . , dxN = xN − xN−1,

the product in (66) is

(I + A(xN)dxN)(I + A(xN−1)dxN−1) · · · (I + A(x1)dx1).

We use the notation
←−∏

1≤i≤N
Ui for a reverse product UNUN−1 · · ·U1; hence

the previous product can be written as
←−∏

1≤i≤N
(I+A(xi)dxi) and we should
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replace
∏

by
←−∏

in equation (66). The noncommutative version of equation
(48) is

←−∏
1≤i≤N

(I + Ai) =
N∑
k=0

∑
i1>···>ik

Ai1 · · ·Aik . (67)

Let us define the resolvant (or propagator) as the matrix

U(b, a) =
←−∏

a≤x≤b
(I + A(x)dx). (68)

Hence the differential equation dy = A(x)ydx is solved by y(b) = U(b, a)y(a)
and from (67) we get

U(b, a) =
∑
k≥0

∫
· · ·

∫
∆k

A(xk) · · ·A(x1)dx1 · · · dxk (69)

with the factors A(xi) in reverse order

A(xk) · · ·A(x1) for x1 < . . . < xk. (70)

One owes to R. Feynman and F. Dyson (1949) the following notational
trick. If we have a product of factors U1, · · · , UN , each attached to a point
xi on a line, we denote by T (U1 · · ·UN) (or more precisely by

←−
T (U1 · · ·UN))

the product Ui1 · · ·UiN where the permutation i1 . . . iN of 1 . . . N is such that
xi1 > · · · > xiN . Hence in the rearranged product the abscisses attached to
the factors increase from right to left. We argue now as in the proof of (62)
and conclude that∫

· · ·
∫
∆k

A(xk) · · ·A(x1)dx1 · · · dxk

=
1

k!

∫ b

a
dx1 · · ·

∫ b

a
dxkT (A(x1) · · ·A(xk)). (71)

We can rewrite the propagator as

U(b, a) = T exp
∫ b

a
A(x)dx, (72)

with the following interpretation:
a) First use the series expS =

∑
k≥0

1
k!
Sk to expand exp

∫ b
a A(x)dx.
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b) Expand Sk = (
∫ b
a A(x)dx)k as a multiple integral∫ b

a
dx1 · · ·

∫ b

a
dxk A(x1) · · ·A(xk).

c) Treat T as a linear operator commuting with series and integrals, hence

T expS =
∑
k≥0

1

k!
T (Sk) =

∑
k≥0

1

k!
T{
∫ b

a
dx1 · · ·

∫ b

a
dxk A(x1) · · ·A(xk)}

=
∑
k≥0

1

k!

∫ b

a
dx1 · · ·

∫ b

a
dxk T (A(x1) · · ·A(xk)).

We give a few properties of the T (or time ordered) exponential:
a) Parallel to the rule∫ c

a
A(x)dx =

∫ b

a
A(x)dx+

∫ c

b
A(x)dx (for a < b < c) (73)

we get

T exp
∫ c

a
A(x)dx = T exp

∫ c

b
A(x)dx · T exp

∫ b

a
A(x)dx. (74)

Notice that, in (73), the two matrices

L =
∫ b

a
A(x)dx, M =

∫ c

b
A(x)dx

do not commute, hence exp(L+M) is in general different from expL ·expM .
Hence formula (74) is not in general valid for the ordinary exponential.

b) The next formula embodies the classical method of “variation of con-
stants” and is known in the modern literature as a “gauge transformation”.
It reads as

S(b) · T exp
∫ b

a
A(x)dx · S(a)−1 = T exp

∫ b

a
B(x)dx (75)

with
B(x) = S(x)A(x)S(x)−1 + S ′(x)S(x)−1, (76)

where S(x) is an invertible matrix depending on the variable x. The gen-
eral formula (75) can be obtained by “taking a continuous reverse product”
←−∏

a≤x≤b
over the infinitesimal form

S(x+ dx)(I + A(x)dx))S(x)−1 = I +B(x)dx (77)
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(for the proof, write S(x + dx) = S(x) + S ′(x)dx and neglect the terms
proportional to (dx)2). We leave it as an exercise to the reader to prove (75)
from the expansion (69) for the propagator.

c) There exists a complicated formula for the T -exponential T exp
∫ b
a A(x)

dx when A(x) is of the form A1(x)+A2(x)
2

. Neglecting terms of order (dx)2, we
get

I + A(x)dx =

(
I + A2(x)

dx

2

)(
I + A1(x)

dx

2

)
(78)

and we can then perform the product
←−∏

a≤x≤b
. This formula is the foundation

of the multistep method in numerical analysis: starting from the value y(x)
at time x of the solution to the equation y′ = Ay, we split the infinitesimal
interval [x, x+ dx] into two parts

I1 = [x, x+
dx

2
], I2 = [x+

dx

2
, x+ dx];

we move at speed A1(x)y(x) during I1 and then at speed A2(x)y(x + dx
2

)
during I2. Let us just mention one corollary of this method, the so-called
Trotter-Kato-Nelson formula:

exp(L+M) = limn→∞(exp(L/n) exp(M/n))n. (79)

d) If the matrices A(x) pairwise commute, the T -exponential of
∫ b
a A(x)dx

is equal to the ordinary exponential. In the general case, the following formula
holds

T exp
∫ b

a
A(x)dx = expV (b, a) (80)

where V (b, a) is explicitly calculated using integration and iterated Lie brack-
ets. Here are the first terms

V (b, a) =
∫ b

a
A(x)dx+

1

2

∫ ∫
∆2

[A(x2), A(x1)]dx1dx2

+
1

3

∫ ∫ ∫
∆3

[A(x3), [A(x2), A(x1)]]dx1dx2dx3 (81)

−1

6

∫ ∫ ∫
∆3

[A(x2), [A(x3), A(x1)]]dx1dx2dx3 + · · · .

The higher-order terms involve integrals of order k ≥ 4. As far as I can
ascertain, this formula was first enunciated by K. Friedrichs around 1950 in
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his work on the foundations of Quantum Field Theory. A corollary is the
Campbell-Hausdorff formula:

expL · expM =

exp(L+M +
1

2
[L,M ] +

1

12
[L, [L,M ]] +

1

12
[M, [M,L]] + · · ·). (82)

It can be derived from (80) by putting a = 0, b = 2, A(x) = M for 0 ≤ x ≤ 1
and A(x) = L for 1 ≤ x ≤ 2.

The T -exponential found lately numerous geometrical applications. If C
is a curve in a space of arbitrary dimension, the line integral

∫
C Aµ(x)dxµ is

well-defined and the corresponding T -exponential

T exp
∫
C
Aµ(x)dxµ (83)

is closely related to the parallel transport along the curve C.

3 Operational calculus

3.1 An algebraic digression: umbral calculus

We first consider the classical Bernoulli numbers. I claim that they are
defined by the equation

(B + 1)n = Bn for n ≥ 2, (1)

together with the initial condition B0 = 1. The meaning is the following:
expand (B+ 1)n by the binomial theorem, then replace the power Bk by Bk.
Hence (B + 1)2 = B2 gives B2 + 2B1 + B0 = B2, that is after lowering the
indices B2 + 2B1 + B0 = B2, that is 2B1 + B0 = 0. Treating (B + 1)3 = B3

in a similar fashion gives 3B2 + 3B1 + B0 = 0. We write the first equations
of this kind

n = 2 2B1 +B0 = 0

n = 3 3B2 + 3B1 +B0 = 0

n = 4 4B3 + 6B2 + 4B1 +B0 = 0

n = 5 5B4 + 10B3 + 10B2 + 5B1 +B0 = 0.
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Starting from B0 = 1 we get successively

B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, . . .

Using the same kind of formalism, define the Bernoulli polynomials by

Bn(X) = (B +X)n. (2)

According to the previous rule, we first expand (B+X)n using the binomial
theorem, then replace Bk by Bk. Hence we get explicitly

Bn(X) =
n∑
k=0

(
n
k

)
Bn−kX

k. (3)

Since d
dX

(X + c)n = n(X + c)n−1 for any c independent of X, we expect

d

dX
Bn(X) = nBn−1(X). (4)

This is easy to check on the explicit definition (3). Here is a similar calculation

(B + (X + Y ))n = ((B +X) + Y )n =
n∑
k=0

(
n
k

)
(B +X)n−kY k,

from which we expect to find

Bn(X + Y ) =
n∑
k=0

(
n
k

)
Bn−k(X)Y k. (5)

Indeed from (4) we get(
d

dX

)k
Bn(X) =

n!

(n− k)!
Bn−k(X) (6)

by induction on k, hence (5) follows from Taylor’s formula Bn(X + Y ) =∑
k≥0

1
k!

( d
dX

)kBn(X)Y k.

We deduce now a generating series for the Bernoulli numbers. Formally

(eS − 1)eBS = eSeBS − eBS = e(B+1)S − eBS

=
∑
n≥0

1

n!
Sn((B + 1)n −Bn) = S((B + 1)1 −B1) = S.
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Since eBS =
∑
n≥0

1
n!
BnSn, we expect

∑
n≥0

BnS
n/n! =

S

eS − 1
. (7)

Again this can be checked rigorously.
What is the secret behind these calculations?
We consider functions F (B,X, . . .) depending on a variable B and other

variables X, . . .. Assume that F (B,X, . . .) can be expanded as a polynomial
or power series in B, namely

F (B,X, . . .) =
∑
n≥0

BnFn(X, . . .). (8)

Then the “mean value” with respect to B is defined by

< F (B,X, . . .) >=
∑
n≥0

BnFn(X, . . .), (9)

where the Bn’s are the Bernoulli numbers: this corresponds to the rule “lower
the index in Bn”. If the function F (B,X, . . .) can be expanded into a series∑
i Fi(B,X, . . .)Gi(X, . . .) where the Gi’s are independent of B, then obvi-

ously3

< F (B,X, . . .) >=
∑
i

< Fi(B,X, . . .) > Gi(X, . . .). (10)

The formal calculations given above are justified by this simple rule which
affords also a probabilistic interpretation (see Section 3.7).

The previous method is loosely described as “umbral calculus”. We in-
sisted on speaking of “mean values” to keep in touch with physical applica-
tions. From a purely mathematical point of view, it is just applying a linear
functional acting on polynomials in B, mapping Bn into Bn for all n’s.

3.2 Binomial sequences of polynomials

These are sequences of polynomials U0(X), U1(X), . . . in one variable X sat-
isfying the following relations:
3 So far we considered only identities linear in the Bn’s. If we want to treat nonlinear terms, like

products Bm ·Bn, we need to introduce two independent symbols B and B′ and use the umbral
rule to replace BmB′

n
by BmBn. In probabilistic terms (see Section 3.7), we introduce two

independent random variables and take the mean value with respect to both simultaneously.
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a) U0(X) is a constant;
b) for any n ≥ 1, one gets

d

dX
Un(X) = nUn−1(X). (11)

By induction on n it follows that Un(X) is of degree ≤ n. The binomial
sequence is normalized if furthermore U0(X) = 1, in which case every
Un(X) is a monic polynomial of degree n, that is

Un(X) = Xn + c1X
n−1 + . . .+ cn.

Applying Taylor’s formula as above (derivation of formula (5)), one gets

Un(X + Y ) =
n∑
k=0

(
n
k

)
Un−k(X)Y k. (12)

We introduce now a numerical sequence by un = Un(0) for n ≥ 0. Putting
X = 0 in (12) and then replacing Y by X (as a variable), we get

Un(X) =
n∑
k=0

(
n
k

)
un−kX

k. (13)

Conversely, given any numerical sequence u0, u1, . . ., and defining the poly-
nomials Un(X) by (13), one derives immediately the relations

d

dX
Un(X) = nUn−1(X), Un(0) = un. (14)

The exponential generating series for the constants un is given by

u(S) =
∑
n≥0

unS
n/n!. (15)

From (13), one obtains the exponential generating series

U(X,S) =
∑
n≥0

Un(X)Sn/n!

for the polynomials Un(X), namely in the form

U(X,S) = u(S)eXS. (16)
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This could be expected. Writing ∂X , ∂S . . . for the partial derivatives, the ba-
sic relation ∂XUn = nUn−1 translates as (∂X−S)U(X,S) = 0 or equivalently
as

∂X(e−XSU(X,S)) = 0. (17)

Hence e−XSU(X,S) depends only on S, and putting X = 0 we obtain the
value U(0, S) = u(S).

The umbral calculus can be successfully applied to our case. Hence Un(X)
can be interpreted as 〈(X+U)n〉 provided 〈Un〉 = un. Similarly u(S) is equal
to 〈eUS〉 and U(X,S) to 〈e(X+U)S〉. The symbolic derivation of (16) is as
follows

U(X,S) = 〈e(X+U)S〉 = 〈eXS · eUS〉 = eXS〈eUS〉 = eXSu(S).

We describe in more detail the three basic binomial sequences of polyno-
mials:

a) The sequence In(X) = Xn satisfies obviously (11). In this (rather
trivial) case, we get

i0 = 1, i1 = i2 = . . . = 0, I(S) = 1, I(X,S) = eXS.

b) The Bernoulli polynomials obey the rule (11) (see formula (4)). I
claim that they are characterized by the normalization B0(X) = 1 and the
further property ∫ 1

0
Bn(x)dx = 0 for n ≥ 1. (18)

Indeed, introducing the exponential generating series

B(X,S) =
∑
n≥0

Bn(X)Sn/n!, (19)

the requirement (18) is equivalent to the integral formula∫ 1

0
B(x, S)dx = 1. (20)

According to the general theory of binomial sequences, B(X,S) is of the form
b(S)eXS, hence∫ 1

0
B(x, S)dx =

∫ 1

0
b(S)exSdx = b(S)

(
eS − 1

S

)
.
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Solving (20) we get b(S) = S/(eS − 1) and from (7) this is the exponential
generating series for the Bernoulli numbers. The exponential generating series
for the Bernoulli polynomials is therefore

B(X,S) =
SeXS

eS − 1
. (21)

Here is a short table:

B0(X) = 1

B1(X) = X − 1

2

B2(X) = X2 −X +
1

6

B3(X) = X3 − 3

2
X2 +

1

2
X.

c) We come to the Hermite polynomials which form the normalized
binomial sequence of polynomials characterized by∫ +∞

−∞
Hn(x)dγ(x) = 0 for n ≥ 1, (22)

where dγ(x) denotes the normal probability law, that is

dγ(x) = (2π)−1/2e−x
2/2dx. (23)

We follow the same procedure as for the Bernoulli polynomials. Hence for
the exponential generating series

H(X,S) =
∑
n≥0

Hn(X)Sn/n! = h(S)eXS (24)

we get ∫ +∞

−∞
H(x, S)dγ(x) = 1, (25)

that is

1/h(S) =
∫ +∞

−∞
exSdγ(x). (26)

The last integral being easily evaluated, we conclude

h(S) = e−S
2/2. (27)
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From this relation, we can evaluate H(X,S) namely

H(X,S) = eXS−S
2/2 = eX

2/2e−(X−S)2/2 (28)

and using Taylor’s expansion for e−(X−S)2/2, we get

Hn(X) = (−1)neX
2/2

(
d

dX

)n
e−X

2/2. (29)

In the spirit of operator calculus, use the identity

eX
2/2 d

dX
e−X

2/2 =
d

dX
−X, (30)

whence

Hn(X) =

(
X − d

dX

)n
.1. (31)

This is tantamount to a recursion formula

Hn+1(X) = XHn(X)− d

dX
Hn(X) = XHn(X)− nHn−1(X). (32)

The following table is then easily derived:

H0(X) = 1

H1(X) = X

H2(X) = X2 − 1

H3(X) = X3 − 3X

H4(X) = X4 − 6X2 + 3.

3.3 Transformation of polynomials

We use the standard notation C[X] to denote the vector space of polynomials
in the variable X with complex coefficients. Since the monomials Xn form a
basis of C[X], a linear operator U : C[X]→ C[X] is completely determined
by the sequence of polynomials Un(X) defined as the image U[Xn] of Xn

under U. Here are a few examples:

I identity operator In(X) = Xn

D derivation
d

dX
Dn(X) = nXn−1

Tc translation operator Tc,n(X) = (X + c)n.
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Notice that in general Tc transforms a polynomial P (X) into P (X + c) and
Taylor’s formula amounts to

Tc = ecD; (33)

furthermore T0 = I. From the definition of the derivative, one gets

D = lim
c→0

(Tc − I)/c. (34)

We can reformulate the properties of binomial sequences:
- the definition DUn(X) = nUn−1(X) amounts to DU = UD;
- the exponential generating series U(X,S) is nothing else than U[eXS];
- formula (12), after substituting c to Y reads as

Un(X + c) =
n∑
k=0

(
n
k

)
Un−k(X)ck

that is

TcU[Xn] =
n∑
k=0

(
n
k

)
U[Xn−k]ck = U[(X + c)n] = UTc[X

n].

Hence this formula expresses that U commutes to Tc

TcU = UTc; (35)

- formula (13) can be rewritten as

U[Xn] =
∑
k≥0

1

k!
ukD

k[Xn]. (36)

From the definition (15) of the exponential generating series, we obtain

U = u(D). (37)

To sum up, our operators are characterized by the following equivalent
properties:

a) U commutes with the derivative D;
b) U commutes with the translation operators Tc;
c) U can be expressed as a power series u(D) in D.

Furthermore, since D acts on eXS by multiplication by S, the operator U =
u(D) multiplies eXS by u(S). Hence we recover formula (16).
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3.4 Expansion formulas

As we saw before, Bn(X) and Hn(X) are monic polynomials and therefore
the sequences (Bn(X))n≥0 and (Hn(X))n≥0 are two bases of the vector space
C[X]. Hence an arbitrary polynomial P (X) can be expanded as a linear com-
bination of the Bernoulli polynomials, as well as of the Hermite polynomials.
Our aim is to give explicit formulas.

Consider a general binomial sequence (Un(X))n≥0 such that u0 6= 0, with
exponential generating series U(X,S) = u(S)eXS. Introduce the inverse se-
ries v(S) = 1/u(S); explicitly

v(S) =
∑
n≥0

vnS
n/n!,

and the coefficients vn are defined inductively by

v0 = 1/u0, vn = − 1

u0

n∑
k=1

(
n
k

)
ukvn−k. (38)

In the spirit of umbral calculus, let us define the linear form φ0 on C[X] by
φ0[Xn] = vn. I claim that the expansion of an arbitrary polynomial in
terms of the Un’s is given by

P (X) =
∑
n≥0

1

n!
φ0[DnP ] · Un(X). (39)

Before giving a proof, let us examine the three basic examples:
a) If Un(X) = Xn, then u(S) = 1, hence v(S) = 1. That is v0 = 1 and

vn = 0 for n ≥ 1. The linear form φ0 is given by φ0[P ] = P (0) and formula
(39) reduces to MacLaurin’s expansion

P (X) =
∑
n≥0

1

n!
(DnP )(0) ·Xn. (40)

b) For the Bernoulli polynomials we know that the series 1/b(S) is equal
to (eS−1)/S, hence vn = 1

n+1
. The linear form φ0 is defined by φ0[Xn] = 1

n+1
,

that is

φ0[P ] =
∫ 1

0
P (x)dx. (41)
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Hence

P (X) =
∑
n≥0

1

n!

(∫ 1

0
DnP (x)dx

)
·Bn(X). (42)

c) In the case of Hermite polynomials, we know that 1/h(S) is equal to
eS

2/2, hence

v2m =
(2m)!

m!2m
, v2m+1 = 0. (43)

According to (26), we get vn =
∫+∞
−∞ xndγ(x), hence

φ0[P ] =
∫ +∞

−∞
P (x)dγ(x) = (2π)−1/2

∫ +∞

−∞
P (x)e−x

2/2dx. (44)

In these three cases, the formula for φ0[P ] takes a similar form, namely

φ0[P ] =
∫ b

a
P (x)w(x)dx (45)

with the following prescriptions:
a = −∞, b = +∞, w(x) = δ(x) in case a),
a = 0, b = 1, w(x) = 1 in case b),
a = −∞, b = +∞, w(x) = (2π)−1/2e−x

2/2 in case c).
The normalization φ0[1] = 1 amounts to

∫ b
a w(x)dx = 1, that is w(x) is the

probability density of a random variable taking values in the interval [a, b]
(see Section 3.7).

There is a peculiarity in case c). Namely, according to the general formula
(39), an arbitrary polynomial P (X) can be expanded in a series of Hermite
polynomials

∑
n≥0 cnHn(X) where cn is equal to 1

n!

∫+∞
−∞ DnP (x)dγ(x). Inte-

grating by parts and taking into account the definition (29) of Hn(X), we
obtain

cn =
1

n!

∫ +∞

−∞
P (x)Hn(x)dγ(x). (46)

This amounts to the orthogonality relation∫ +∞

−∞
Hm(x)Hn(x)dγ(x) = δmnn! (47)

for the Hermite polynomials. There is no such orthogonality relation for the
Bernoulli polynomials.
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One final word about the proof of (39). By linearity, it suffices to consider
the case P = Um, that is to prove the biorthogonality relation

φ0[DnUm] = n!δmn. (48)

We first calculate φ0[Um]. From formula (13), we obtain

φ0[Um] =
m∑
k=0

(
m
k

)
um−kφ0[Xk] =

m∑
k=0

(
m
k

)
um−kvk,

and from (38), φ0[Um] is 0 for m ≥ 1. Since DnUm is proportional to Um−n
according to the basic formula DUm = mUm−1, one gets φ0[DnUm] = 0 for
m 6= n. Finally DmUm = m!u0, hence φ0[DmUm] = v0m!u0 = m!.

3.5 Signal transforms

A transmission device transforms a suitable input f into an output F. Both
are evolving in time and are represented by functions of time f(t) and F (t).4

We assume the device to be linear and in a stationary regime, that is there
is a linear operator V taking f(t) into F (t) (linearity) and f(t + τ) into
F (t+ τ) for any fixed τ (stationarity).

Here are the main types of response:

Input Output

δ(t) I(t)

ept Θ(t)ept

tn Vn(t)

In the first case, δ(t) is a Dirac singular function, that is a pulse, and I(t) is
the impulse response. By stationarity, V transforms δ(t− τ) into I(t− τ);
an arbitrary input f can be represented as a superposition of pulses

f(t) =
∫ +∞

−∞
f(τ)δ(t− τ)dτ (49)

hence by linearity the output

F (t) =
∫ +∞

−∞
f(τ)I(t− τ)dτ =

∫ +∞

−∞
f(t− τ)I(τ)dτ. (50)

4 For simplicity, we restrict to the case where input and output are scalars and not vectors.
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In the non-anticipating case, I(t) is zero before the pulse δ(t) occurs, that
is I(t) = 0 for t < 0. In this case the output is given by

F (t) =
∫ t

−∞
f(τ)I(t− τ)dτ. (51)

In the case of the exponential input f(t) = ept, the output is equal to∫+∞
−∞ epτI(t− τ)dτ =

∫+∞
−∞ ep(t−τ)I(τ)dτ according to (50), that is, to Θ(p)ept

with the spectral gain

Θ(p) =
∫ +∞

−∞
e−pτI(τ)dτ. (52)

We can give an a priori argument: fp(t) = ept is a solution of the differential
equation Dfp = pfp; since the operator V is stationary, that is, commutes
with the translation operators Tc, it commutes with D = limc→0(Tc − I)/c.
Hence the output Fp corresponding to the input fp is a solution of the dif-
ferential equation DFp = pFp, hence is proportional to ept.

In a similar way, the monomials tn satisfy the cascade of differential equa-
tions

D[t] = 1, D[t2] = 2t, D[t3] = 3t2, . . .

Since V commutes with D and the constants are the solutions of the differ-
ential equation D(f) = 0, it follows that the images Vn(t) = V[tn] form a
binomial sequence of polynomials. Explicitly

Vn(t) =
∫ +∞

−∞
(t− τ)nI(τ)dτ =

n∑
k=0

(
n
k

)
vn−kt

k

with the constants

vn = (−1)n
∫ +∞

−∞
I(τ)τndτ = Vn(0). (53)

Comparing (52) to (53) we conclude

Θ(p) =
∑
n≥0

vnp
n/n!. (54)

More generally, since ept is equal to
∑
n≥0

1
n!
pntn, application of the linear

operator V gives

V[ept] =
∑
n≥0

1

n!
pnV [tn], (55)
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that is

Θ(p)ept =
∑
n≥0

1

n!
pnVn(t). (56)

Up to the change in notation (p for S, and t for X), the spectral gain Θ(p) is
nothing else than the numerical exponential generating series associated to
the binomial sequence (Vn(t))n≥0.

Comparing with the results obtained in Section 3.3, it is tempting to
write the operator V as Θ(D). According to (54), Θ(D) can be interpreted
as
∑
n≥0 vnD

n/n!, but it is known that infinite order differential operators
are not so easily dealt with. A better interpretation is obtained via Laplace
or Fourier transform. Indeed since D multiplies ept by p, any function F (D)
ought to multiply ept by F (p), and the rule V[ept] = Θ(p)ept is in agreement
with the interpretation V = Θ(D). If the input can be represented as a
Laplace transform

f(t) =
∫
eptφ(p)dp, (57)

then V = Θ(D) transforms it into the output

F (t) =
∫
eptΘ(p)φ(p)dp. (58)

Similarly, if the input f(t) is given by its spectral resolution (or Fourier
transform)

f(t) =
∫ +∞

−∞
f̂(ω)eiωtdω, (59)

then the output is given by

F (t) =
∫ +∞

−∞
Θ(iω)f̂(ω)eiωtdω. (60)

This is Heaviside’s magic trilogy:
symbolic p
operator D
spectral iω = 2πiν (ν frequency, ω = 2πν pulsation)

Θ(p)←→ Θ(D)←→ Θ(2πiν).

Recall that in the Laplace transform, p is a complex variable, while in the
Fourier transform ω and ν are real variables (see example in the next section).
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3.6 The inverse problem

This is the problem of recovering the input, knowing the output. In operator
terms, we have to compute the inverse U of the operator V (if it exists!).
Since V is stationary, so is U, and at the level of polynomial inputs and
outputs, U corresponds to a binomial sequence of polynomials Un(t):{

input Un(t)
output tn.

Together with the numerical sequence vn = Vn(0), we have to consider
the numerical sequence un = Un(0). Introducing the exponential generating
series

u(S) =
∑
n≥0

1

n!
unS

n, v(S) =
∑
n≥0

1

n!
vnS

n = Θ(S), (61)

we can write U = u(D) and V = v(D) at least when acting on polynomials.
Since U and V are inverse operators, we expect the relation u(S)v(S) = 1,
equivalent to the chain of relations

u0v0 = 1,
n∑
k=0

(
n
k

)
ukvn−k = 0 for n ≥ 1, (62)

to hold. Indeed, this is easily checked (see Section 3.4, formula (38)).
Since the input Un(t) corresponds to the output tn, a Taylor-MacLaurin

expansion of the output corresponds to an expansion of the input in terms
of the Un(t). Fix an epoch t0 and use the Taylor expansion of the output

F (t) =
∑
n≥0

1

n!
DnF (t0)(t− t0)n. (63)

Applying the operator U, we get

f(t) =
∑
n≥0

1

n!
DnF (t0) · Un(t− t0), (64)

since U transforms (t − t0)n into Un(t − t0) by stationarity. The reader is
invited to compare this formula to formula (39).

We give one illustrating example. Let the output be a moving average of
the input

F (t) =
∫ t

t−1
f(s)ds, (65)
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I(t)

1

1 t0

Fig. 3. The impulse response corresponding to (65)

corresponding to the impulse response shown in Figure 3.
The spectral gain is

Θ(p) =
∫ 1

0
e−pτdτ =

1− e−p

p
. (66)

The inverse series u(p) = 1/Θ(p) is given by

u(p) =
p

1− e−p
. (67)

Since u(−p) = p
ep−1

is the exponential generating series of the Bernoulli
numbers, the polynomials Un(t) are easily identified,

Un(t) = (−1)nBn(−t) = Bn(t) + ntn−1 = Bn(t+ 1). (68)

Notice that Θ(p) vanishes for p 6= 0 of the form p = 2πin with an integer n;
equivalently, the inverse function u(p) has poles for p 6= 0, p = 2πin. Hence
not every output is admissible since (65) entails

∑
n F (t+ n) =

∫+∞
−∞ f(s)ds.

That is, an output satisfies the necessary (and sufficient) condition∑
n

F (t+ n) = c (c a constant) (69)
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and the input f(t) can be reconstructed from the output F (t) up to the
addition of a function f0(t) with

f0(t) = f0(t+ 1),
∫ 1

0
f0(t)dt = 0. (70)

Exercise a) Derive from (64) the relation

f(t) =
∑
n≥0

1

n!
unD

nF (t), (71)

for a general transmission device, where 1/Θ(p) =
∑
n≥0 unp

n/n!.
b) In the particular case (65), one gets un = Bn(1), hence un = Bn if

n ≥ 2, and u0 = 1, u1 = 1
2
.

c) Deduce from relation (7) that Bn = 0 for n ≥ 3, n odd.
d) Derive the Euler-MacLaurin summation formula

1

2
(f(t) + f(t− 1))

=
∫ t

t−1
f(s)ds+

∑
m≥1

1

(2m)!
B2m[D2m−1f(t)−D2m−1f(t− 1)]. (72)

3.7 A probabilistic application

We consider a random variable ξ. In general, we denote by 〈X〉 the mean
value of a random variable X. We want to define a probabilistic version of
the so-called Wick Powers in Quantum Field Theory.

The goal is to associate to ξ a sequence of random variables : ξn : such
that

a) the mean value of : ξn : is 0 for n ≥ 1;
b) there exists a normalized binomial sequence of polynomials

Πn(X) such that : ξn := Πn(ξ).
Let w(x) be the probability density associated to ξ, hence w(x) ≥ 0 and∫+∞

−∞ w(x)dx = 1. Moreover, for any (non random) function f(x) of a real
variable x, the random variable f(ξ) has a mean value given by

〈f(ξ)〉 =
∫ +∞

−∞
f(x)w(x)dx. (73)
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Hence the conditions a) and b) amount to

0 = 〈Πn(ξ)〉 =
∫ +∞

−∞
Πn(x)w(x)dx for n ≥ 1. (74)

Using the same method as in Section 3.2, we introduce the exponential gener-
ating series Π(X,S) =

∑
n≥0 Πn(X)Sn/n!, hence the relation (74) translates

into ∫ +∞

−∞
Π(x, S)w(x)dx = 1. (75)

Putting π(S) = Π(0, S), hence Π(X,S) = π(S)eXS, we derive

1/π(S) =
∫ +∞

−∞
exSw(x)dx. (76)

We translate these relations into probabilistic jargon: replace S by p and
X by ξ to get

1/π(p) = 〈epξ〉 (77)

Π(ξ, p) =
∑
n≥0

1

n!
pn : ξn : (78)

Π(ξ, p) = π(p)epξ. (79)

Extending the definition of : : by linearity to epξ =
∑
n≥0

1
n!
pnξn, we rewrite

(78) as Π(ξ, p) =: epξ :. Here is the conclusion

: epξ : =
epξ

〈epξ〉
. (80)

Let us specialize our results in the case of the binomial sequences consid-
ered so far:

a) If ξ = 0, then 〈epξ〉 = 1, hence : epξ := epξ = 1. That is : ξn := 0 for
n ≥ 1.

b) Suppose that ξ is uniformly distributed in the interval [0, 1], that
is w(x) = 1 if 0 ≤ x ≤ 1, and w(x) = 0 otherwise. Then

〈epξ〉 =
∫ 1

0
epxdx =

ep − 1

p
. (81)

We get ∑
n≥0

1

n!
pn : ξn : = : epξ : =

pepξ

ep − 1
, (82)
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that is
: ξn : = Bn(ξ) (83)

where Bn(X) is the Bernoulli polynomial of degree n. In particular

: ξ : = ξ − 〈ξ〉 = ξ − 1

2

: ξ2 : = ξ2 − ξ +
1

6

: ξ3 : = ξ3 − 3

2
ξ2 +

1

2
ξ, etc . . .

c) Assume now that ξ is normalized: 〈ξ〉 = 0, 〈ξ2〉 = 1, and follows a
Gaussian law. Then w(x) = (2π)−1/2e−x

2/2 and

〈epξ〉 = (2π)−1/2
∫ +∞

−∞
epx−x

2/2dx = ep
2/2. (84)

Reasoning as above, we obtain

: ξn : = Hn(ξ) (85)

where Hn(X) is the Hermite polynomial of degree n. Explicitly

: ξ : = ξ

: ξ2 : = ξ2 − 1

: ξ3 : = ξ3 − 3ξ.

To get a general formula, apply (80) to obtain the pair of relations

: epξ : = e−p
2/2epξ, epξ = ep

2/2 : epξ : . (86)

Equating equal powers of p, we derive

: ξn : =
∑

0≤k≤n/2
(−1)k

n!

2kk!(n− 2k)!
ξn−2k, (87)

and conversely

ξn =
∑

0≤k≤n/2

n!

2kk!(n− 2k)!
: ξn−2k : . (88)
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Notice that the orthogonality relation (47) for the Hermite polynomials trans-
lates in probabilistic terms into

〈: ξm : : ξn :〉 = m!δmn, (89)

hence the sequence 1, : ξ :, : ξ2 :, . . . is derived from the natural sequence
1, ξ, ξ2, . . . by orthogonalization.

To conclude, we can use the reflected probability density w(−x) as an
impulse response and define the input-output relation by

F (t) =
∫
f(t+ τ)w(τ)dτ, (90)

that is
F (t) = 〈f(t+ ξ)〉 (91)

in probabilistic terms. The interpretation is that the input is spoiled by
random delay in transmission. Then Πn(t) is the input corresponding to the
output tn. Analytically this is expressed by∫ +∞

−∞
Πn(t+ τ)w(τ)dτ = tn, (92)

and probabilistically by
〈: (ξ + t)n :〉 = tn. (93)

3.8 The Bargmann-Segal transform

Let us consider again the input-output transformation in the Gaussian case.
It is then called the Bargmann-Segal transform (or B-transform), denoted
by B. According to (90), we have

Bf(z) =
1√
2π

∫ +∞

−∞
f(x+ z)e−x

2/2dx (94)

or

Bf(z) =
1√
2π

∫ +∞

−∞
f(x)e−(z−x)2/2dx. (95)

Comparing formulas (24) and (28), one obtains

e−(z−x)2/2 = e−x
2/2

∑
n≥0

Hn(x)zn/n!, (96)
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and by integrating term by term in the expression (95) one concludes

Bf(z) =
∑
n≥0

Γn(f)zn/n! (97)

with

Γn(f) =
∫ +∞

−∞
Hn(x)f(x)dγ(x). (98)

Taking into account the orthogonality property (47) namely

∫ +∞

−∞
Hm(x)Hn(x)dγ(x) = δmnn!,

one derives Γn(f) = n!cn for f given by a series
∑
n≥0 cnHn(x). That is, the

B-transform takes
∑
n≥0 cnHn(x) into

∑
n≥0 cnz

n.

To be more precise, we need to introduce some function spaces. The
natural one is L2(dγ) consisting of the (measurable) functions f(x) for which
the integral

∫+∞
−∞ |f(x)|2dγ(x) is finite; the scalar product is given by

〈f1|f2〉 =
∫ +∞

−∞
f1(x)f2(x)dγ(x). (99)

In this space, the functions Hen(x) := Hn(x)/(n!)1/2 (for n = 0, 1, . . .) form
an orthonormal basis5. The B-transform takes this space onto the space of
series

∑
cnz

n with
∑
n≥0 n!|cn|2 <∞.

In its original form (94), the transformation B requires z to be real, but
the form (95) extends to the case of a complex number z. Indeed, from the
property that

∑
n≥0 n!|cn|2 is finite, it follows that the series

∑
n≥0 cnz

n has
an infinite radius of convergence, hence represents an entire function of the
complex variable z. The space of such entire functions is denoted F(C) and
called the Fock space (in one degree of freedom, see Section 3.9).

The elements of L2(dγ) can be interpreted as the random variables of the
form X = f(ξ) with 〈|X|2〉 finite, where ξ is a normalized Gaussian random
variable. We saw that B takes Hn(ξ) = : ξn : into zn. Hence it is tempting
to denote by : : the map inverse to B, so that : zn : = Hn(x). We have a

5 The orthonormality condition 〈Hem|Hen〉 = δmn is nothing else than the orthogonality condi-
tion (47). But it requires a proof to show that this system is complete, that is that any function
in the Hilbert space L2(dγ) can be approximated by polynomials (in the norm convergence).
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new kind of operational calculus

B
L2(dγ) ⇀↽ F(C),

: :

where B transforms a function f(x) or the random variable X = f(ξ)
into the entire function

BX(z) = e−z
2/2〈X · ezξ〉 (100)

and the inverse map takes an entire function Φ(z) =
∑
n≥0 cnz

n in
the Fock space into the random variable : Φ(ξ) :=

∑
n≥0 cn : ξn :.

According to the definition (94), B takes the function epx into epz+p
2/2,

that is it acts as eD2/2 where D is the derivation, followed by the change
of variable x into z. This result can be reformulated as follows. Using the
exponential generating series∑

n≥0

Hn(x)pn/n! = epx−p
2/2 (101)

for the Hermite polynomials, and noting that eD2/2 applied to epz−p
2/2 gives

epx, we conclude that eD2/2 takes Hn(x) into xn, that is B coincides on the
polynomials with the differential operator eD2/2 of infinite degree.

We would like to conclude the general rule

B = eD2/2, (102)

hence
: : = e−D2/2. (103)

One way to substantiate these claims is to consider the heat (or diffusion)
equation

∂sF (s, x) =
1

2
∂2
xF (s, x) (104)

with initial value
F (0, x) = f(x). (105)

Since D = ∂x, the solution of equation (104) can be written formally as
F (s, x) = esD

2/2f(x), hence eD2/2f(x) represents the value for s = 1 of
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the solution of equation (104) which agrees for s = 0 with f(x). But
we know an explicit solution to the heat equation

F (s, x) =
1√
2πs

∫ +∞

−∞
f(x+ u)e−u

2/2sdu. (106)

Comparing with (94), we obtain

Bf(x) = F (1, x), (107)

and this relation is the true expression of B = eD2/2.
The operator eD2/2 (or B) is smoothing. That is, if we simply assume

that f belongs to L2(dγ) (that is that the integral
∫+∞
−∞ |f(x)|2e−x2/2dx is

finite), then the function F (1, x) = eD2/2f(x) extends to an entire function
in the complex domain. Conversely, the Wick operator : : = e−D2/2

makes sense only for the functions g(x) (for x real) which extend in the
complex domain into a function Φ(z) (for z complex) belonging to the Fock
space F(C).

3.9 The quantum harmonic oscillator

Let us rewrite the definition of the B-transform as an integral operator

Bf(z) =
∫ +∞

−∞
B(z, x)f(x)dx (108)

with a kernel

B(z, x) = (2π)−1/2e−(z−x)2/2. (109)

It is often more convenient to replace the Hilbert space L2(dγ) by the Hilbert
space L2(R) 6. Defining the function u0(x) by (2π)−1/4e−x

2/4, we get

dγ(x) = u0(x)2dx, (110)

hence
∫
|f(x)|2dγ(x) is finite if and only if

∫
|f(x)u0(x)|2dx is finite. That

is, the multiplication by the function u0(x) gives an isometry of L2(dγ) onto

6 consisting of the (measurable) functions φ(x) such that
∫ +∞
−∞ |φ(x)|2dx be finite, with scalar

product 〈φ1|φ2〉 =
∫ +∞
−∞ φ1(x)φ2(x)dx.
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L2(R). We can transfer the B-transform to L2(R), as the isometry B′ of
L2(R) onto F(C) 7 defined by Bf = B′(fu0). Explicitly

B′f(z) =
∫ +∞

−∞
B′(z, x)f(x)dx (111)

with

B′(z, x) = u0(x)−1B(z, x) = (2π)−1/4e−z
2/2+zx−x2/4. (112)

Many properties are easier to describe in the Fock space. For instance the
function 1 is called the ground state Ω, the multiplication by z is called
the creation operator, denoted by a∗, and the derivation ∂z = d

dz
is the

annihilation operator, denoted by a. The vectors

en =
1√
n!

(a∗)nΩ, (113)

that is the functions en(z) = 1√
n!
zn, form an orthonormal basis of F(C) with

e0 = Ω. An easy calculation gives{
aen = n1/2en−1 for n ≥ 1, ae0 = 0

a∗en = (n+ 1)1/2en+1,
(114)

hence the matrices

a =



0
√

1 0 0 . . .

0 0
√

2 0 . . .

0 0 0
√

3 . . .
0 0 0 0 . . .
. . . . . . .
. . . . . . .


, a∗ =



0 0 0 0 . . .√
1 0 0 0 . . .

0
√

2 0 0 . . .

0 0
√

3 0 . . .
. . . . . . .
. . . . . . .


in the basis (en)n≥0; it follows that a and a∗ are adjoint to each other.
Moreover from the definitions a∗ = z, a = ∂z follows the commutation
relation

aa∗ − a∗a = 1. (115)

7 with the scalar product 〈Φ1|Φ2〉 =
∑

n≥0
n!cn,1cn,2 for Φj(z) =

∑
n≥0

cn,jz
n

(j = 1, 2).
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Finally the number operator N = a∗a is given by N = z∂z, hence is
diagonalized in the basis (en)

Nen = nen. (116)

In the spirit of operational calculus, we transfer these results from the
Fock space model to the spaces L2(dγ) and L2(R). The following table sum-
marizes these translations (where ∂x is d

dx
):

Space L2(dγ) L2(R) F(C)

Ω 1 (2π)−1/4e−x
2/4 = u0(x) 1

en (n!)−1/2Hn(x) (n!)−1/2Hn(x)u0(x) (n!)−1/2zn

a∗ x− ∂x x/2− ∂x z

a ∂x x/2 + ∂x ∂z

N x∂x − ∂2
x −∂2

x + x2/4− 1/2 z∂z

For instance, the fact that a∗ corresponds to x − ∂x in L2(dγ) is proved as
follows: from the definition of B(z, x) one gets

(x+ ∂x)B(z, x) = zB(z, x). (117)

Multiplying by f(x) and integrating by parts, we get∫
B(z, x)(x− ∂x)f(x)dx =

∫
(x+ ∂x)B(z, x)f(x)dx

= z
∫
B(z, x)f(x)dx,

that is B((x− ∂x)f) = zBf . The other cases are similar.

We apply these results to the harmonic oscillator. In classical mechan-
ics, the harmonic oscillator is described by the Hamiltonian H = p2

2m
+ Kq2

2

in canonical coordinates p,q. The equation of motion is q̈+ω2q = 0 with the
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pulsation ω =
√
K/m, and the momentum p = mq̇. To get the corresponding

quantum Hamiltonian H, replace p by the operator p = −ih̄∂q hence

H = − h̄2

2m
∂2
q +

mω2q2

2
. (118)

Introduce the dimensionless coordinate x = (2mω/h̄)1/2q. Then H can be
rewritten as

H = h̄ω(a∗a +
1

2
) (119)

in the model L2(R). From the diagonalization of N = a∗a, we conclude that
the energy levels of the quantum harmonic oscillator (that is, the eigenvalues
of H) are given by h̄ω(n+ 1

2
) with n = 0, 1, 2, . . .: that is Planck’s radiation

law, with the correction 1
2

giving 1
2
h̄ω for the energy of the ground state

u0 = Ω.

4 The art of manipulating infinite series

4.1 Some divergent series

Euler claimed that S = 1−1+1−1+ . . . is equal to 1
2
. Here is the purported

proof:

S = 1 − 1 + 1 − 1 + . . .
+ S = 1 − 1 + 1− . . .

————————————
2 S = 1 + 0 + 0 + 0 + . . . = 1.

What is implicit is the use of two rules:
a) If S = u0 + u1 + u2 + . . ., then S = 0 + u0 + u1 + . . .
b) If S = u0 + u1 + u2 + . . . and S ′ = u0 + u′1 + u′2 + . . . , then S + S ′ =

(u0 + u′0) + (u1 + u′1) + (u2 + u′2) + . . . .
These rules certainly hold for convergent series but to extend them to diver-
gent series is somewhat hazardous.

Let us repeat the previous calculation in a slightly more general form:

S = 1 − t + t2 − t3 + . . .
+ tS = t − t2 + t3 − . . .
—————————————

(1 + t)S = 1 + 0 + 0 + 0 + . . . = 1.
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The result is

1− t+ t2 − t3 + . . . =
1

1 + t
, (1)

the classical summation of the geometric series. If t is a real number such
that |t| < 1, the geometric series is convergent, and the use of rules a) and
b) is justified. To get Euler’s result, take the limiting value t = 1 in (1).

What we need is the explicit description of various procedures to define
rigorously the sum of certain divergent series (not all at once) and to compare
these procedures. Suppose we want to define the sum

S = u0 + u1 + . . . . (2)

Introduce weights p0,t, p1,t, . . . and the weighted series

St = p0,tu0 + p1,tu1 + . . . . (3)

If the series St is convergent for each value of the parameter t, and
St approaches a limit S when t approaches some limiting value t0,
then S is the sum for this procedure8.

The previous procedure is reasonable only when limt→t0 pn,t = 1 for n =
0, 1, . . .. Some examples:

a) p0,N = p1,N = . . . = pN,N = 1, pn,N = 0 for n > N and N = 0, 1, 2, . . ..
Then the weighted sum amounts to the finite sum

SN = u0 + . . .+ uN

(obviously convergent) and the convergence of SN towards a limit S corre-
sponds to the convergence of the series u0 + u1 + u2 + . . . in the standard
sense, with the standard sum S.

b) Put σN = 1
N+1

(S0 + . . .+ SN); this corresponds to the weights

pn,N =

{
1− n

N+1
for 0 ≤ n ≤ N

0 for n > N.
(4)

If σN converges to a limit σ, this is the Cesaro-sum of the series u0 + u1 +
u2 + . . ..

8 See Knopp’s book [8] for this method.
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c) To get the Abel summation, we introduce the weights pn,t = tn for
n = 0, 1, 2, . . . and a real parameter t with 0 < t < 1. We take therefore the
limit for t = 1 of the power series

∑
n≥0 unt

n.
It is known that every convergent series with sum S is Cesaro-summable

with the same sum σ = S. Similarly, Cesaro summation is extended by Abel
summation. Euler’s example is un = (−1)n, hence

SN =

{
1 if N ≥ 0 is even
0 if N ≥ 0 is odd

(5)

and therefore

σN =

{
1
2

if N is odd
1
2

+ 1
2N+2

if N is even.
(6)

It follows that σN converges to σ = 1
2
. Hence the series 1 − 1 + 1 − 1 + . . .

is Cesaro-summable to 1
2
, and a previous calculation shows that it is Abel-

summable to 1
2

also.
The scope of Abel summation can be extended in various ways. For in-

stance, if the sequence (un) is bounded, that is |un| ≤ M for n = 0, 1, 2, . . .
with a constant M independent of n, then the power series

∑
n≥0 unz

n con-
verges for any complex number z with |z| < 1 and defines therefore a holo-
morphic function U(z) in the open disk |z| < 1 (see Fig. 4). If the limit
limr→1 U(reiθ)(for 0 ≤ r < 1) exists, it can be taken as an Abel sum for the
series

∑
n≥0 une

inθ.
In a slightly more general way, we can assume that the sequence (un) is

polynomially bounded, that is

|un| ≤ Cnk

for all n = 1, 2, . . . and some constants C > 0 and k = 1, 2, . . . The ra-
dius of convergence of the series

∑
n≥0 unz

n is still at least 1, and if U(1) =
limr→1 U(r) = limr→1

∑
n≥0 unr

n exists, it is the Abel sum for u0+u1+u2+. . .
We just give one example, namely un = (−1)nnk for k = 0, 1, 2, . . .. We

calculate

U(z) =
∑
n≥0

unz
n =

∑
n≥0

(−1)nnkzn =
∑
n≥0

nk(−z)n

=
∑
n≥0

(z∂z)
k(−z)n = (z∂z)

k
∑
n≥0

(−z)n = (z∂z)
k 1

1 + z
.
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Fig. 4. The open unit disk

Particular cases:

k = 0, U(z) =
1

1 + z
, U(1) =

1

2

k = 1, U(z) =
−z

(1 + z)2
, U(1) = −1

4

k = 2, U(z) =
z(z − 1)

(1 + z)3
, U(1) = 0

k = 3, U(z) =
−z3 + 4z2 − z

(1 + z)4
, U(1) =

1

8
,

that is ∑
n≥0

(−1)n =
1

2

∑
n≥0

(−1)nn = −1

4∑
n≥0

(−1)nn2 = 0

∑
n≥0

(−1)4n3 =
1

8
.
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In general, we get U(1) = (z∂z)
k 1

1+z
|z=1 that is, after the change of variable

z = eu, ∑
n≥0

(−1)nnk = ∂ku
1

eu + 1

∣∣∣∣
u=0

. (7)

Using the exponential generating series for the Bernoulli numbers in the form

1

eu − 1
=

1

u
+
∑
k≥0

Bk+1

(k + 1)!
uk

we obtain

1

eu + 1
=

1

eu − 1
− 2

e2u − 1
=
∑
k≥0

(1− 2k+1)Bk+1

(k + 1)!
uk, (8)

hence Euler’s result

∑
n≥0

(−1)nnk =
(1− 2k+1)Bk+1

k + 1
. (9)

We leave it to the reader to rederive the previous cases 0 ≤ k ≤ 3 using the
values for B1, B2, B3, B4 given in Section 3.1. We come back to this result in
Section 4.4.

Euler gave formulas for wildly divergent series like
∑
n≥0(−1)nn!. Using

the classical formula

n! =
∫ ∞

0
e−ttndt (10)

and assuming unrestrictedly as legitimate formal rules both term-by-term
integration and summation of a geometric series, we get

∑
n≥0

(−1)nn! =
∑
n≥0

(−1)n
∫ ∞

0
e−ttndt

=
∫ ∞

0
e−t

∑
n≥0

(−t)n dt =
∫ ∞

0

e−t

1 + t
dt,

the last integral being convergent. This is just the beginning of the use of
Borel transform and Borel summation for divergent series.
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4.2 Polynomials of infinite degree and summation of series

It is an important principle that a polynomial can be reconstructed
from its roots. More precisely, let

P (z) = cnz
n + cn−1z

n−1 + . . .+ c1z + c0 (11)

(with cn 6= 0) be a polynomial of degree n with complex coefficients. If λ1 is a
root of P , that is P (λ1) = 0, it is elementary to factorize P (z) = (z−λ1)P1(z)
where P1(z) is a polynomial of degree n− 1. Continuing this process, we end
up with a factorization

P (z) = (z − λ1) . . . (z − λm)Q(z), (12)

where the polynomial Q(z) of degree n−m has no more roots. According to
a highly non-trivial result, first stated by d’Alembert (1746) and proved by
Gauß (1797), a polynomial without roots is a constant, hence the factoriza-
tion (12) takes the form

P (z) = cn(z − λ1) . . . (z − λn). (13)

By a well known calculation, one derives the following relations between
coefficients and roots

λ1 + . . .+ λn = −cn−1/cn∑
i<j

λiλj = cn−2/cn, etc . . .

For our purposes, it is better to use the inverses of the roots, assumed
to be nonzero. Since the logarithmic derivative transforms product into sum
and annihilates constants, we derive

DP (z)/P (z) =
n∑
i=1

1

z − λi
. (14)

Use of the geometric series gives

n∑
i=1

1

z − λi
= −

n∑
i=1

∑
k≥0

zk/λk+1
i . (15)
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Introducing the sums of inverse powers of roots

γk =
n∑
i=1

λ−ki , (16)

we conclude from this calculation

zDP (z) + P (z)
∑
k≥1

γkz
k = 0. (17)

Assuming for simplicity c0 = 1 and equating the coefficients of equal powers
of z, we obtain the following variant of Newton’s relations

γk + c1γk−1 + . . .+ ck−1γ1 + kck = 0 (18)

for k ≥ 1. It is important to notice that the degree n of P (z) does not
appear explicitly in the relation (18), which can be solved inductively

γ1 = −c1 (19)

γ2 = c2
1 − 2c2 (20)

γ3 = −c3
1 + 3c1c2 − 3c3 (21)

γ4 = c4
1 − 4c2

1c2 + 4c1c3 − 4c4 + 2c2
2. (22)

Around 1734, Euler undertook to calculate the sum of the series S2 =∑
n≥1

1
n2 . This series is slowly convergent, but Euler invented efficient acceler-

ation methods for summing series and calculated the sum S2 = 1.64493406 . . .;
he recognized S2 = π2/6. He obtained also the value of S4 =

∑
n≥1 1/n4 to

be π4/90. To establish these results rigorously, he introduced the equation
sinx = 0 admitting the solutions x = 0,±π,±2π,±3π, . . . Discarding the
root x = 0 and using the power series expansion of sin x, we are led to
consider the equation

1− x2

6
+

x4

120
− . . . = 0

with roots ±π,±2π,±3π, . . .. With the previous notations we have

c1 = 0, c2 = −1

6
, c3 = 0, c4 =

1

120
, . . .

γ2 =
∑
n≥1

[
1

(πn)2
+

1

(−πn)2

]
= 2S2/π

2

γ4 =
∑
n≥1

[
1

(πn)4
+

1

(−πn)4

]
= 2S4/π

4.
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Assuming that the relations (20) and (22) still hold, we get

2S2/π
2 = γ2 = −2c2 =

1

3

2S4/π
4 = γ4 = −4c4 + 2c2

2 = − 1

30
+

1

18
=

1

45
.

The desired relations
S2 = π2/6, S4 = π4/90

follow immediately.
To summarize the method used by Euler:
a) first guess the value from accurate numerical work;
b) consider the function

sin x

x
= 1− x2

6
+

x4

120
− . . .

as a polynomial of infinite degree, with infinitely many roots ±π,±2π,
±3π, . . .;

c) since Newton’s relations (19) to (22) do not involve explicitly the
degree n of the polynomial, assume their validity in the case n = ∞ as
well, and exploit them for P (x) = (sinx)/x.

4.3 The Euler-Riemann zeta function

We use Riemann’s definition and notation

ζ(s) =
∑
n≥1

n−s. (23)

The series converges absolutely for any complex number s with real part <(s)
greater than 1. It has been shown by Riemann that ζ(s) can be analytically
continued to the whole complex plane, the only singularity being a pole of
order 1 at s = 1, that is ζ(s) − 1/(s − 1) is an entire function. Obviously
ζ(1) =

∑
n≥1 1/n is a divergent series, but ζ(s) is defined when s 6= 1 is an

integer (positive or negative). Euler was the first to calculate ζ(s) when s is
an integer.

We consider the case where s is even and strictly positive. Euler
proved the formula

ζ(2k) =
22k−1π2k|B2k|

(2k)!
, (24)
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and in particular

ζ(2) =
2π2|B2|

2!
=
π2

6
(25)

ζ(4) =
8π4|B4|

4!
=
π4

90
. (26)

Since ζ(2) =
∑
n≥1 1/n2 = S2 and similarly ζ(4) = S4, we recover the formulas

for S2 and S4. The method we used in the previous section could be extended
to cover the general case (24), but it is simpler to go back to the formula given
for the logarithmic derivative in (14). For the function sin z, the logarithmic
derivative is cot z = cos z/ sin z. This function is meromorphic in the whole
complex plane, with simple poles of residue 1 at each integral multiple of π.
Euler assumed at first that, in analogy with (14), cot z should be
equal to the sum of its polar contributions, that is

cot z =
+∞∑

n=−∞

1

z − nπ
. (27)

Assume this relation for a moment, and derive (24). The series (27) is not
absolutely convergent, but can be summed in a symmetrical way by taking∑+∞
n=−∞ to be limN→∞

∑+N
n=−N . Hence

cot z − 1

z
=
∞∑
n=1

2z

z2 − n2π2
. (28)

The right-hand side can be developed using the geometric series; for |z| < π,
the series involved are absolutely convergent, hence

∞∑
n=1

2z

z2 − n2π2
= −

∞∑
n=1

2z
∞∑
k=1

(z2)k−1

(n2π2)k
= −2

∞∑
n=1

∞∑
k=1

z2k−1

n2kπ2k

= −2
∞∑
k=1

z2k−1

π2k

∞∑
n=1

1

n2k
,

that is

cot z =
1

z
− 2

∑
k≥1

ζ(2k)

π2k
z2k−1. (29)
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Another use of the exponential generating series for the Bernoulli numbers
yields

cot z = i
e2iz + 1

e2iz − 1
=

2i

e2iz − 1
+ i

= 2i
{

1

2iz
− 1

2
+
∑
k≥1

B2k

(2k)!
(2iz)2k−1

}
+ i,

hence finally

cot z =
1

z
+
∑
k≥1

(−1)k22kB2k

(2k)!
z2k−1. (30)

To establish (24), it is enough to compare the expansions (29) and (30) for
cot z and to note that ζ(2k) =

∑
n≥1

1
n2k is the sum of a convergent series of

positive numbers, hence ζ(2k) > 0.
Euler’s proof for the expansion (27) of cot z is reproduced in many text-

books. Here is a variant which seems to have been unnoticed so far. Define

Φ(z) = cot z −
+∞∑

n=−∞

1

z − nπ
. (31)

Examining the poles of cot z, we see that Φ(z) is an entire function of the
complex variable z. A simple manipulation yields the functional equation

Φ(z) =
1

2

[
Φ
(
z

2

)
+ Φ

(
z + π

2

)]
; (32)

we have to prove that Φ(z) = 0 for all z.
a) The function Φ is bounded: indeed, denote by Cn the set of complex

numbers whose modulus is at most (2n + 1)π. Since C1 is a compact set and
Φ is continuous, there exists a constant M > 0 such that |Φ(z)| ≤ M for z
in C1. Assuming the estimate |Φ(z)| ≤M for z in Cn, we use the functional
equation for z in Cn+1,

|Φ(z)| ≤ 1

2

∣∣∣∣Φ(z2
)∣∣∣∣+ 1

2

∣∣∣∣Φ(z + π

2

)∣∣∣∣ , (33)

and observe that both z/2 and (z+ π)/2 belong to Cn, hence |Φ(z/2)| ≤M ,
|Φ((z + π)/2)| ≤M ; from (33) we conclude that |Φ(z)| ≤M (for z in Cn+1).
Every complex number belongs to some set Cn, hence |Φ(z)| ≤M for all z.
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b) We appeal now to Liouville’s theorem to conclude that Φ, being a
bounded entire function, is a constant, hence Φ(z) = Φ(0).

c) The function Φ is odd, that is Φ(−z) = −Φ(z), hence Φ(0) = 0.

Liouville’s theorem, the main ingredient in this proof, was proved around
1850, a century after Euler worked on these questions. It is interesting to note
that the d’Alembert-Gauß theorem is an easy corollary of Liouville’s theorem.
[Hint: if P (z) is a polynomial without roots, the function Φ(z) = 1/P (z) is
entire and bounded, hence a constant; that is, P (z) is a constant.]

4.4 Sums of powers of numbers

The other result of Euler about ζ(s) can be stated as follows:

1k + 2k + 3k + . . . = −Bk+1

k + 1
(34)

for k = 1, 2, 3, . . . It looks at first odd, since it gives a finite value for an
infinite sum of positive numbers, obviously divergent since each term is at
least 1. Euler’s derivation is more or less as follows.

Formula (9) can be written as

1k − 2k + 3k − 4k + . . . = −(1− 2 · 2k)Bk+1

k + 1
. (35)

On the other hand, multiply the left-hand side of (34) by 1 − 2 · 2k and
rearrange. This yields

(1− 2 · 2k)(1k + 2k + 3k + . . .) =

1k + 2k + 3k + 4k + 5k + 6k + . . .

−2( 2k + 4k + 6k + . . .)

——————————————–

= 1k − 2k + 3k − 4k + 5k − 6k + . . .

and finally (34) is obtained from (35).

This procedure is highly questionable, but can be fixed as follows. We
introduce two functions

ζ(s) =
∑
n≥1

n−s, η(s) =
∑
n≥1

(−1)n−1n−s. (36)
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Provided these functions can be continued analytically to the negative inte-
gers, formula (34) and (35) read respectively as

ζ(−k) = −Bk+1

k + 1
(34′)

η(−k) = (2k+1 − 1)
Bk+1

k + 1
(35′)

for k = 1, 2, . . . Furthermore

η(s) =
∑

n odd

n−s −
∑

n even

n−s =
∑
n≥1

n−s − 2
∑

n even

n−s

= ζ(s)− 2
∑
m≥1

(2m)−s

and finally
η(s) = (1− 21−s)ζ(s). (37)

Our manipulation of series is justified as long as <(s) > 1, but the final
formula remains valid for all s for which both ζ(s) and η(s) are regular
(analytic continuation!). In particular

η(−k) = (1− 2k+1)ζ(−k). (38)

Hence formulas (34′) and (35′) are equivalent, substantiating Euler’s deriva-
tion.

Using the known values of the Bernoulli numbers, we deduce

ζ(−2) = ζ(−4) = ζ(−6) = . . . = 0

ζ(−1) = − 1

12
, ζ(−3) =

1

120
, ζ(−5) = − 1

252
, . . . .

It can also be shown that ζ(0) = −1/2. Hence we get the paradoxical results:

ζ(0) = 1 + 1 + 1 + . . . = −1

2

ζ(−1) = 1 + 2 + 3 + . . . = − 1

12
.

Among the many methods available to construct the analytical contin-
uation of ζ(s), we select the following one using η(s). Indeed, from Euler’s
definition of the gamma function

Γ (s) =
∫ ∞

0
e−tts−1dt (39)
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(for <(s) > 1), we deduce by a simple change of variable

Γ (s)n−s =
∫ ∞

0
e−ntts−1dt. (40)

By summation and term by term integration

Γ (s)η(s) =
∑
n≥1

(−1)n−1Γ (s)n−s =
∑
n≥1

(−1)n−1
∫ ∞

0
e−ntts−1dt

=
∫ ∞

0

{∑
n≥1

(−1)n−1e−nt
}
· ts−1dt,

that is

Γ (s)η(s) =
∫ ∞

0

ts−1

et + 1
dt. (41)

All the calculations are justified as long as <(s) > 1. We use now a general
principle, unknown to Euler, to deal with integrals of the type

Φ(s) =
∫ ∞

0
F (t)ts−1dt. (42)

We split the integral as
∫ 1

0 +
∫∞

0 .
a) Assuming that F (t) decreases at infinity faster than any power t−k (for

k ≥ 0), then

Φ1,∞(s) =
∫ ∞

1
F (t)ts−1dt (43)

extends to an entire function.
b) Assuming that F (t) is differentiable to any order on the closed interval

[0, 1], then

Φ0,1(s) =
∫ 1

0
F (t)ts−1dt (44)

extends to a meromorphic function in the complex plane C. The only singu-

larities9 are at s = 0,−1,−2, . . . with singular part DkF (0)
k!(s+k)

around s = −k.

Applying this principle to the definition (39) of Γ (s) we recover the well-
known fact that Γ (s) extends to a meromorphic function, with poles at s =

0,−1,−2, . . . and singular part (−1)k

k!(s+k)
around s = −k. We use now formula

9 Hint: integrate by parts using d
dt
t−s = −st−s−1.
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(41) for Γ (s)η(s). Hence this function extends to a meromorphic function
with poles at s = 0,−1, . . . and singular part ck

s+k
around s = −k, where

1

et + 1
=
∑
k≥0

ckt
k. (45)

According to (8), we get

ck =
(1− 2k+1)Bk+1

(k + 1)!
. (46)

Dividing Γ (s)η(s) by Γ (s), the poles cancel; hence η(s) extends to an entire
function, and comparing the singular parts of Γ (s)η(s) and Γ (s) around
s = −k, we find

η(−k) = (−1)kk!ck. (47)

We have to distinguish between several cases:
• k = 0 yields η(0) = c0 = −B1 = 1

2
;

• k ≥ 2 is even yields η(−k) = 0 since Br = 0 for r = k + 1 odd;
• k ≥ 1 is odd, then (−1)k = −1 and

η(−k) =
(2k+1 − 1)Bk+1

k + 1
. (48)

This is Euler’s formula (35) or formula (35′). The analytical continuation of
ζ(s) can now be performed by using (37), that is we define

ζ(s) =
η(s)

1− 21−s . (49)

Since η(s) is entire, the only singularity of ζ(s) is a pole at s = 1, with
singular part 1

s−1
. We can now calculate ζ(−k) from η(−k) and get

ζ(−k) = −Bk+1

k + 1
(50)

for k = 1, 2, . . ., as expected. Furthermore, from η(0) = 1
2

we get the remain-
ing value

ζ(0) = −η(0) = −1

2
. (51)
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4.5 Variation I: Did Euler really fool himself?

Bourbaki wrote (in [2], page VI.29): “Mais la tendance au calcul formel est
la plus forte, et l’extraordinaire intuition d’Euler lui-même ne l’empêche pas
de tomber parfois dans l’absurde, lorsqu’il écrit par exemple 0 =

∑+∞
n=−∞ x

n”.
Did Euler really fool himself?

To keep with our habits (after Cauchy!) denote by z a complex variable
and try to evaluate the sum of I =

∑+∞
n=−∞ z

n. We break the sum into I+ +
I− − 1, where

I+ =
∑
n≥0

zn, I− =
∑
n≤0

zn.

By the geometric series, we get I+ = 1
1−z and I− = 1

1−1/z
and simple algebra

gives

I+ + I− =
1

1− z
+

z

z − 1
=

1− z
1− z

= 1, (52)

hence I = 0 as claimed. What is paradoxical is that there is no complex
number z 6= 0 for which both series I+ and I− converge simultaneously,
since

∑
n≥0 z

n converges for |z| < 1 and
∑
n≤0 z

n converges for |z| > 1. We
really need analytical continuation: I+ as a function of z extends from the
convergence domain |z| < 1 to C−{1} as the rational function 1

1−z , and one
goes from I+to I− by inverting z (into 1/z). If both I+ and I− are extended
in this way to C−{1}, the calculation (52) is perfectly valid, hence I = 0 in
this sense.

Another method to prove I = 0 is to observe that multiplication of I
by z shifts zn to zn+1, hence rearranges the series, hence Iz = I, hence
I(z − 1) = 0, and by dividing by z − 1 we get I = 0 for z 6= 1. Nevertheless,
there is some trouble. Consider the critical region |z| = 1 where both I+ and
I− diverge, and use polar coordinates z = e2πiu. Then I is the series

J(u) =
+∞∑

n=−∞
e2πinu. (53)

Playing with Fourier series, introduce a test function f(u) supposed to be
smooth (i.e., infinitely differentiable) and periodic, f(u + 1) = f(u). We
expand it as a Fourier series

f(u) =
+∞∑

n=−∞
cne

2πinu (54)
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with

cn =
∫ 1

0
e−2πinuf(u)du. (55)

From (54) we get, by putting u = 0,

f(0) =
+∞∑

n=−∞
cn (56)

hence by (55) and (53)

f(0) =
+∞∑

n=−∞

∫ 1

0
e−2πinuf(u)du =

∫ 1

0

{
+∞∑

n=−∞
e−2πinu

}
· f(u)du,

and finally

f(0) =
∫ 1

0
J(u)f(u)du. (57)

Remove now the assumption f(u+ 1) = f(u) by introducing a smooth func-
tion φ(u) vanishing off some finite interval and by defining

f(u) =
+∞∑

m=−∞
φ(u+m) (58)

(an absolutely convergent series). By an easy manipulation, one derives from
(57)

+∞∑
m=−∞

φ(m) =
∫ +∞

−∞
J(u)φ(u)du. (59)

Using the standard Dirac’s function δ(u), we get by definition

φ(m) =
∫ +∞

−∞
φ(u)δ(u−m)du,

hence

0 =
∫ +∞

−∞

{
J(u)−

+∞∑
m=−∞

δ(u−m)

}
φ(u)du. (60)

Since the test function φ is arbitrary, we can omit it from (60), hence the
conclusion

J(u) =
+∞∑

m=−∞
δ(u−m). (61)
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That is, by substituting e2πiu to z, the series I =
∑+∞
n=−∞ z

n is not 0 but∑+∞
m=−∞ δ(u−m) . So Euler was wrong, but not too much, since δ(u−m) = 0

for u 6= m, hence
∑+∞
n=−∞ z

n is 0 for z 6= 1.
Recall the other proof, using

I(z − 1) = 0; (62)

division by z − 1 gives I = 0, provided z 6= 1, corresponding to u /∈ Z for
z = e2πiu. Formula (62) is equivalent to

J(u)(e2πiu − 1) = 0, (63)

and this suggests a new proof of (61). Indeed, if f(u) is a smooth function with
isolated simple zeroes um, then J(u)f(u) = 0 implies that J(u) is a linear
combination of terms cmδ(u − um). Here f(u) = e2πiu − 1, hence um = m
for m in Z, that is m = 0,±1,±2, . . . hence J(u) =

∑+∞
m=−∞ cmδ(u − m)

for suitable coefficients cm. But J(u + 1) = J(u), hence all coefficients cm
are equal to some constant c and J(u) = c

∑+∞
m=−∞ δ(u − m). It remains

to calculate the normalization constant c. That kind of argument could be
understood by Euler, but it acquires now a rigorous meaning due to Laurent
Schwartz’s theory of distributions (200 years after Euler!)10.

Another version of our proof is by using a contour integral (see Fig. 5).
Consider a function Φ(z) holomorphic in a domain containing the annulus
r ≤ |z| ≤ R bounded by C+ and C− (beware the orientations). The rational
function R(z) = 1

z−1
is given by a convergent series

∑−1
n=−∞ z

n for |z| > 1,
hence for z in C+. It follows∫

C+

R(z)Φ(z)dz =
−1∑

n=−∞

∫
C+

znΦ(z)dz. (64)

Similarly ∫
C−
R(z)Φ(z)dz =

∞∑
n=0

∫
C−
znΦ(z)dz, (65)

and using the residue formula,∫
C+

−1∑
n=−∞

zn · Φ(z)dz +
∫
C−

∞∑
n=0

zn · Φ(z)dz = 2πiΦ(1).

10 Our final result can be expressed as
∑+∞

n=−∞ e
2πinu =

∑+∞
m=−∞ δ(u −m). It is equivalent to

Poisson’s summation formula.
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-1 1

-i

i

C-

C+

r R

Fig. 5. Path for the contour integral

A shorthand would be

+∞∑
n=−∞

zn = 2πiδ(z − 1) (66)

using δ-functions in the complex domain11.
Let us go back to sums of powers and Bernoulli numbers and polynomials.

A classical formula reads as follows:

Bk(u) = −k!
∑
n6=0

e2πinu

(2πin)k
. (67)

11 A classical formula is

δ(f(u)) =
∑
m

1

|f ′(um)|δ(u− um),

the summation being extended over the solutions of the equation f(um) = 0 (provided f ′(um) 6=
0). In this formula f(u) is a real-valued function of a real variable u. Assuming that it remains
valid for f(u) = e2πiu − 1 (with complex values), we derive

2πiδ(z − 1) =

+∞∑
m=−∞

δ(u−m)

for z = e2πiu. This brings together our two methods.
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A complex version is the following

∑
n6=0

zn

nk
= −(2πi)k

k!
Bk

(
log z

2πi

)
(68)k

(by the change of variables z = e2πiu) for k = 0, 1, 2, . . .. For k = 0, this reads
as Euler’s “absurd formula” ∑

n6=0

zn = −1, (68)0

since B0(x) = 1. The case k = 1 is

∑
n6=0

zn

n
= πi−log z; (68)1

of course

∞∑
n=1

zn

n
= log

1

1− z
−1∑

n=−∞

zn

n
= −

∞∑
m=1

(z−1)m

m
= − log

1

1− 1/z

and (68)1 amounts to

log
1

1− z
− log

1

1− 1/z
= πi− log z. (69)

Since log(−1) = −πi and 1
1−1/z

= z
z−1

= z·(−1)
1−z , this relation follows from

log uv = log u+log v, but some care has to be exercized with the multivalued
complex logarithm (notice the ambiguity log(−1) = ±πi for instance).

For the general case, notice the following. Define

Lk(z) =
∑
n6=0

zn

nk
, Rk(z) = −(2πi)k

k!
Bk

(
log z

2πi

)
. (70)

We know already that L0(z) = R0(z) and L1(z) = R1(z). Furthermore, it is
obvious that

z
d

dz
Lk(z) = Lk−1(z), (71)
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and from the fact that the derivative of Bk(x) is kBk−1(x), one gets

z
d

dz
Rk(z) = Rk−1(z). (72)

So we can easily conclude that L2(z)−R2(z) is a constant, which has to be
shown to be 0 to prove L2(z) = R2(z). Then L3(z) − R3(z) is a constant,
etc. . .

This line of argument can be made rigorous. Introduce the polylogarith-
mic functions12

Lik(z) =
∞∑
n=1

zn

nk
. (73)

Our formula reads now as follows:

Lik(z)+(−1)kLik

(
1

z

)
= −(2πi)k

k!
Bk

(
log z

2πi

)
. (74)k

To make sense of it, we proceed as follows:
a) We cut the complex plane along the real interval [0,+∞[, to get Ω0 =

C− [0,+∞[.
b) In the cut plane, we choose the somewhat unusual branch of the log-

arithm log(reiθ) = log r + iθ for 0 < θ < 2π.
c) We define the function Lik(z) by the convergent series (73) for |z| < 1,

and verify that

z
d

dz
Lik(z) = Lik−1(z) (75)

for k = 1, 2, . . . and Li0(z) = z
1−z . Since the cut plane Ω1 = C − [1,∞[ is

simply connected, any holomorphic function in Ω1 has a primitive, hence by
(75), each Lik(z) extends analytically to Ω1.

d) For z in Ω0, both z and 1
z

are in Ω1, hence both Lik(z) and Lik(
1
z
) are

defined for z in Ω0, and formula (74)k is asserted for z in Ω0.
e) The cases k = 0 and k = 1 are settled as before.
f) From (75) and the rule for the derivative of Bk(x), we get that the

validity of (74)k for the index k implies that of (74)k+1 for the index k + 1

12 The dilogarithm Li2(z) was known to Euler, and further developed in the 19th century in
connection with Lobatchevski geometry. Fifteen years ago, the subject was almost forgotten,
to be resurrected by geometers and mathematical physicists alike. It is now a hot subject of
research.
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up to the addition of a constant. To show that it is 0 use the fact that for
k ≥ 2, the series

∑∞
n=1

zn

nk
converges also for |z| = 1, and study the limiting

value for z → 1, using Bk(0) = Bk(1).

So after all, Euler was right!

Putting z = 1 in (74)k we obtain the value of ζ(k) + (−1)kζ(k). For k
odd, we get 0 = 0, but for k even, we recover the value of ζ(k) given by (24).

4.6 Variation II: Infinite products

Suppose we want to calculate∞! = 1 ·2 ·3 · · ·. Going to logarithms we define

∞! = exp

( ∞∑
n=1

log n

)
. (76)

Suppose we have a series
∑
n≥1 an with nan bounded. What is known as the

ζ-summation procedure fits our general framework at the beginning of
Section 4.1: consider the convergent series

∑
n≥1 ann

−ε for ε > 0, and let ε
tend to 0. To sum the series

∑
n≥1 log n, we should consider

∑
n≥1 n

−ε · log n
but this converges for ε > 1 only and we cannot go directly to the limit ε→ 0.
What we have to do is to consider the series

∑
n≥1 n

−s · log n for <(s) > 1;
this is obviously the derivative −ζ ′(s) of the Riemann zeta function, hence it
can be analytically continued to the neighborhood of 0. The regularized sum
of
∑
n≥1 log n is then −ζ ′(0) and finally

∞! = e−ζ
′(0). (77)

From the formulas (37) and (41), one derives without much ado ζ ′(0) =
−1

2
log 2π (a formula more or less equivalent to Stirling’s formula). Conclu-

sion:

∞! =
√

2π. (78)

General rule: to normalize a divergent product Πn≥1an, introduce the
series

∑
n≥1 a

−s
n = Z(s), make an analytic continuation from the convergence

domain <(s) > σ0 to s = 0 and define

reg∏
n≥1

an := e−Z
′(0). (79)
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Generalizing slightly (78), we can use this method to prove the identity13

reg∏
n≥0

(n+ v) =

√
2π

Γ (v)
. (80)

We can compare this to the Weierstraß product expansion for the gamma
function

1

Γ (v)
= veγv

∏
n≥1

(
1 +

v

n

)
e−v/n. (81)

A careless, but nevertheless instructive, comparison of (80) and (81) is as
follows:

∏
n≥1

(
1 +

v

n

)
e−v/n =

∏
n≥1

n+ v

n
e−v/n

=
∏
n≥1

(n+ v)
( ∏
n≥1

n
)−1

exp
(
− v

∑
n≥1

1/n
)

and regularizing the divergent series
∑
n≥1

1
n

by the Euler constant γ, we are
through! Notice that the two most important properties of Γ , namely

1) the functional equation Γ (v + 1) = vΓ (v);
2) the function 1

Γ (v)
of a complex variable v is entire with zeroes at

0,−1,−2, . . .
can be read off immediately from (80).

According to our general method, the proof of (80) requires to study the
function

ζ(s, v) =
∑
n≥0

(n+ v)−s (82)

known as Hurwitz zeta function (see [9] for more details). We list a few
properties:

a) a particular case ζ(s, 1) = ζ(s);
b) functional equations:

ζ(s, v + 1) = ζ(s, v)− v−s (83)

∂vζ(s, v) = −sζ(s+ 1, v); (84)

13 Formally: ∞!
(∞+v)!

= Γ (v + 1).
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c) analytic continuation: for fixed v, ζ(s, v) can be analytically contin-
ued to the complex plane with one singularity at s = 1, with singular part

1
s−1

; hence ζ(s, v)− ζ(s) is an entire function;
d) special values:

ζ(−k, v) = −Bk+1(v)

k + 1
(85)

for k = 0, 1, 2, . . .
The last relation can be written, in the spirit of Euler, as

vk + (v + 1)k + (v + 2)k + . . . = −Bk+1(v)

k + 1
. (86)

As a particular case we get the surprising identity

v0 + (v + 1)0 + (v + 2)0 + . . . =
1

2
− v. (87)

5 Conclusion: From Euler to Feynman

Feynman is the modern heir to Euler. Among his many contributions to
theoretical physics, the most famous one is his use of diagrams to encode in
a very compact way complicated integrals with significance in experiments
in high energy physics. His method of diagrams has been generalized by
various authors (Cvitanovic, Penrose,. . . ) to provide a very flexible tool for
computations in tensor analysis.

His really bold discovery is the use of integrals in function spaces (see for
instance [5]), the so-called Feynman path integrals. These (so far) ill-defined
integrals are powerful tools to evaluate infinite series and infinite products.
We give just one example. Consider the Hilbert space L2(0, 2π) of functions
f(x) with 0 < x < 2π and

∫ 2π
0 |f(x)|2dx finite. The unbounded operator

∆ = −d2/dx2 can be diagonalized with eigenfunctions en(x) = einx (for n =
0,±1,±2, . . .) corresponding to the eigenvalue n2. Hence the characteristic
determinant det(v −∆) is an entire function with the eigenvalues as zeroes.
Using our regularized products, one now defines the regularized determinant
as

detreg(v −∆) = v

 reg∏
n≥1

(v − n2)2

 (1)



70 Pierre Cartier

(0 is a simple eigenvalue, and 12, 22, . . . are eigenvalues of multiplicity 2).
This can be evaluated by a formula due to Euler

sin v = v
∏
n≥1

(
1− v2

n2π2

)
, (2)

equivalent (via logarithmic derivatives) to the formula

cot v =
1

v
+
∑
n≥1

2v

v2 − n2π2
(3)

also due to Euler, and considered above.
Feynman’s bold step is as follows. From matrix calculus, we learn the

following integral formula for a characteristic determinant

det(v − A) =

∫
Rn
dnx exp−π

v n∑
i=1

x2
i −

∑
i,j

ai,jxixj

−2

(4)

where dnx is the volume element dx1 · · · dxn in the Euclidean space Rn, and
A = (ai,j) is a real symmetric, positive definite, matrix of size n × n. By
analogy, Feynman writes det(v −∆) as the square of the inverse of∫

L2(0,2π)
Dx · exp(−πS(x)), (5)

where the so-called action S(x) is defined by

S(x) = v
∫ 2π

0
x(t)2dt+

∫ 2π

0
x′(t)2dt (6)

(the variable in [0, 2π] is denoted by t, the function in L2(0, 2π) by x(t), and
its derivative by x′(t)). The symbol Dx is formally a volume element in the
Hilbert space L2(0, 2π) (infinite-dimensional generalization of the Euclidean
space Rn), sometimes written as C

∏
t dx(t). Its rigorous definition is the

main problem [5].
Part of these calculations have been put into a rigorous framework, but

not all of them.
After all, Feynman shall be right!
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4. Cartier P. (1966) Quantum mechanical relations and theta functions, in Algebraic groups and

discontinuous subgroups. Proc. Symp. Pure Maths, vol. IX, American Mathematical Society,
Providence, 361-383.

5. DeWitt-Morette C., Cartier P. and Folacci P. (editors) (1997) Functional Integration, Basics
and Applications, Nato Asi, Series B, vol 361. Plenum Press.

6. Euler L. (1755) Institutiones calculi differentialis cum ejus usu in analysi infinitorum ac doct-
rina serierum. Berlin, 1910.

7. Hardy G. H. (1924) Orders of infinity. Cambridge Univ. Press (reprinted by Hafner, New York,
1971).

8. Knopp K. (1964) Theorie und Anwendung der unendlichen Reihen. Springer (5th edition).
9. Waldschmidt M. et al (1995) From Number Theory to Physics. Springer (see Chapter 1 by

P. Cartier: An introduction to zeta functions).
10. Weil A. (1984) Number Theory, An Approach Through History. Birkhäuser.


