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Definition 1. Let A be a square matrix whose entries are complex numbers.
If Av = λv for a complex number λ and a non-zero vector v, then λ is an
eigenvalue of A, and v is the corresponding eigenvector.

Definition 2. Let A be a square matrix. Then

p(x) = det(A− Ix)

is the characteristic polynomial of A.

1 Matrix similarity

Definition 3. Square matrices A and D are similar if A = CDC−1 for some
regular matrix C. Equivalently, they are similar if they are matrices of the
same linear function, with respect to different bases.

Lemma 1. If A and D are similar, then they have the same characteristic
polynomials, and thus they have the same eigenvalues with the same algebraic
multiplicities. Furthermore, their eigenvalues also have the same geometric
multiplicities.

Proof. Suppose thatA = CDC−1. Then the characteristic polynomial det(A−
Ix) of A is equal to

det(A− Ix) = det(CDC−1 − Ix) = det(C(D − Ix)C−1)

= det(C) det(D − Ix) det(C−1) = det(D − Ix),

which is the characteristic polynomial of D.
Furthermore, for any λ, we have v ∈ Ker(D − λI) if and only if Cv ∈

Ker(A−λI), and since C is regular, we have dim(Ker(D−λI)) = dim(Ker(A−
λI)); hence, the geometric multiplicities of λ as an eigenvalue of A and D
coincide.
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Corollary 2. If A and B are square matrices, then AB and BA have the
same eigenvalues.

Proof. Let X =

(
AB 0
B 0

)
and Y =

(
0 0
B BA

)
. Note that AB and X have

the same eigenvalues except for extra zero eigenvalues of X, and that BA
and Y have the same eigenvalues except for extra zero eigenvalues of Y .

Furthermore, let C =

(
I A
0 I

)
, and note that XC = CY , and thus X and

Y are similar and have the same eigenvalues by Lemma 1.

Observation 3. If A = CDC−1 for some square matrices A and D, then
An = CDnC−1. More generally, for any polynomial p, we have p(A) =
Cp(D)C−1.

2 Diagonalization

Example 1. Let A =

−2 −1 −2
4 3 2
5 1 5

 and let f : R3 → R3 be defined by

f(x) = Ax.
Eigenvectors and eigenvalues of A are

• v1 = (1,−1,−1)T , eigenvalue 1,

• v2 = (−1, 2, 1)T , eigenvalue 2,

• v3 = (−1, 1, 2)T , eigenvalue 3.

Note that B = v1, v2, v3 is a basis of R3. If [x]B = (α1, α2, α3), then

f(x) = f(α1v1 + α2v2 + α3v3)

= α1f(v1) + α2f(v2) + α3f(v3)

= α1v1 + 2α2v2 + 3α3v3,

and thus [f(x)]B,B = (α1, 2α2, 3α3). Therefore, the matrix of f with respect
to the basis B is

[f ]B,B = D =

1 0 0
0 2 0
0 0 3

 .

Let B′ be the standard basis of R3. Let

C = [id]B,B′ = (v1|v2|v3) =

 1 −1 −1
−1 2 1
−1 1 2

 .
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Recall that

[f ]B′,B′ = [id]B,B′ [f ]B,B[id]B′,B = [id]B,B′ [f ]B,B[id]−1B,B′ ,

and thus
A = CDC−1.

Lemma 4. An n× n matrix A is similar to a diagonal matrix if and only if
there exists a basis of Cn formed by eigenvectors of A.

Proof. Suppose that A = CDC−1 for a diagonal matrix D with diagonal
entries λ1, . . . , λn. Since C is regular, B = Ce1, . . . , Cen is a basis of Cn.
Furthermore, A(Cei) = CDei = λi(Cei), and thus B is formed by eigenvec-
tors of A.

Conversely, suppose that v1, . . . , vn is a basis of Cn formed by eigenvectors
of A corresponding to eigenvalues λ1, . . . , λn, and let D be the diagonal
matrix D with diagonal entries λ1, . . . , λn. Let C = (v1| . . . |vn). Then

C−1AC = C−1(Av1| . . . |Avn) = C−1(λ1v1| . . . |λnvn) = C−1CD = D,

and thus A and D are similar.

Lemma 5. If λ1, . . . , λk are pairwise distinct eigenvalues of A (not neces-
sarily all of them) and v1, . . . , vk are corresponding eigenvectors, then v1,
. . . , vk are linearly independent.

Proof. We proceed by induction on k; the claim is trivial for k = 1. Suppose
that α1v1 + . . . + αkvk = o; then o = A(α1v1 + . . . + αkvk) = α1λ1v1 + . . . +
αkλkvk, and α1(λ1 − λk)v1 + α2(λ2 − λk)v2 + . . .+ αk−1(λk−1 − λk)vk−1 = o.
By the induction hypothesis, αj(λj − λk) = 0 for 1 ≤ j ≤ k − 1, and since
λj 6= λk, we have αj = 0. Therefore, αkvk = 0, and since vk 6= o, we have
αk = 0.

Corollary 6. Let A be an n×n matrix. If the geometric multiplicity of every
eigenvalue of A is equal to its algebraic multiplicity, then A is similar to a
diagonal matrix. In particular, this is the case if all eigenvalues of A have
algebraic multiplicity 1, i.e., if A has n distinct eigenvalues.

Example 2. Let a0 = 3, a1 = 8 and an+2 = 5an+1 − 6an for n ≥ 0.
Determine a formula for an.

Let A =

(
0 1
−6 5

)
. Note that A(an, an+1)

T = (an+1, 5an+1 − 6an)T =

(an+1, an+2)
T , and thus (an, an+1)

T = An(3, 8)T . The eigenvalues of A are 2
and 3, and thus

A = C

(
2 0
0 3

)
C−1
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for some matrix C. Therefore, (an, an+1)
T = C

(
2n 0
0 3n

)
C−1

(
3
8

)
. It fol-

lows that an = β12
n + β23

n for some β1 and β2. Since a0 = 3 and a1 = 8, we
have β1 = 1 and β2 = 2. Hence, an = 2n + 2 · 3n.

3 Jordan normal form

Not all matrices are diagonalizable. However, a slight weakening of this claim
is true.

Definition 4. Let Jk(λ) be the k × k matrix


λ 1 0 0 . . .
0 λ 1 0 . . .

. . .
0 0 . . . 0 λ

. We call

each such matrix a Jordan λ-block.
A matrix J is in Jordan normal form if

J =


Jk1(λ1) 0 0 . . .

0 Jk2(λ2) 0 . . .
. . .

0 0 . . . Jkm(λm)


for some integers k1, . . . , km and complex numbers λ1, . . . , λm.

Note that J1(λ) = (λ), and that Jk(λ) has eigenvalue λ with algebraic
multiplicity k and geometric multiplicity 1.

Definition 5. Let V be a linear space over complex numbers. A chain of
generalized eigenvectors for a linear function f : V → V with eigenvalue
λ is a sequence of non-zero vectors v1, . . . , vk such that f(v1) = λv1 and
f(vi) = λvi + vi−1 for i = 2, . . . k.

Lemma 7. Let V be a linear space over complex numbers of finite dimension
n. For every linear function f : V → V, there exist chains C1, . . . , Cm of
generalized eigenvectors such that the union of C1, . . . , Cm is a basis of V.

Proof. We prove the claim by induction on n. Let λ be an eigenvalue of f , and
let g : V→ V be defined by g(x) = f(x)− λx. Let W = Im(g). Since there
exists a non-zero eigenvector corresponding to λ, we have dim(Ker(g)) > 0,
and thus d = dim(W) = n − dim(Ker(g)) < n. Note that if x ∈ W,
then x = g(y) for some y ∈ V, and f(x) = f(g(y)) = f(f(y) − λy) =
f(f(y)) − λf(y) = g(f(y)), and thus f(x) ∈ W. Hence, we can consider
f as a function from W to W. By the induction hypothesis, there exist
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chains C ′1, . . . , C ′m′ of generalized eigenvectors of f such that their union
B′ = v1, . . . , vd is a basis of W. Without loss of generality, the chains C ′1,
. . . , C ′q correspond to the eigenvalue λ. Order the elements of the basis B′

so that v1, . . . , vm′ are the last elements of the chains C ′1, . . . , C ′m′ . For
i = 1, . . . , q, let zi be a vector in V such that g(zi) = vi. Let C1, . . . , Cq be
the chains obtained from C ′1, . . . , C ′q by adding last elements z1, . . . , zq. Let
Ci = C ′i for i = q + 1, . . . ,m′.

Let x1, . . . , xq be the first elements of the chains C ′1, . . . , C ′q. Note that
x1, . . . , xq ∈ W ∩ Ker(g). Let v be any vector from W ∩ Ker(g) and let
(α1, . . . , αd) be the coordinates of v with respect to B′. Consider any of the
chains C corresponding to an eigenvalue µ, and let vi be its last element such
that αi 6= 0. Then the i-th coordinate of g(v) = f(v) − λv is (µ − λ)αi,
and since g(v) = 0, we conclude that µ = λ. Hence, v only has non-zero
coordinates in the chains corresponding to the eigenvalue λ. If vi is in such
a chain and it is not its first element, then let vj be the element of the chain
preceding vj. Then, the j-th coordinate of g(v) is αi, and thus αi = 0. We
conclude that the only coordinates of v that may possibly be non-zero are
those corresponding to x1, . . . , xq. Therefore, K = x1, . . . , xq forms a basis
of W ∩Ker(g).

Let K ′ = K, u1, . . . , ut be a basis of Ker(g) extending K (where t =
dim(Ker(g)) − q = n − d − q). For i = m′ + 1, . . . ,m′ + t, let Ci be the
chain consisting of ui (which is an eigenvector corresponding to λ), and let
m = m′ + t.

We found chains C1, . . . , Cm of generalized eigenvectors such that their
union contains n vectors. To show that it forms a basis, it suffices to argue
that these vectors are linearly independent. Consider any p =

∑q
i=1 αizi +∑t

i=1 βiui +w for some w ∈W, and let u =
∑t

i=1 βiui. Note that g(p) ∈W,
and observe that for i = 1, . . . , q, the i-th coordinate of g(p) with respect to
the basis B′ is equal to αi. Hence, if p = o, then α1 = . . . = αq = 0, and
thus w = p − u = −u. Furthermore, u ∈ Ker(g), and thus g(u) = o, and if
p = o, then g(w) = −g(u) = o, and w ∈ Ker(g) ∩W = span(K). However,
then β1 = . . . = βt = 0 and w = o, since K ′ is a basis of Ker(g).

Theorem 8. Every square matrix A is similar to a matrix in Jordan normal
form.

Proof. Let f(x) = Ax. Let C1, . . . , Cm be chains of generalized eigenvectors
of f forming a basis B of Cn. If C1 = v1, . . . , vk, then f(v1) = λv1 and
f(vi) = λvi + vi−1 for i = 2, . . . , k and some eigenvalue λ. Hence, the
first column of [f ]B,B is λe1 and the i-th column of [f ]B,B is λei + ei−1 for
i = 2, . . . , k. Therefore, the first k columns of [f ]B,B are formed by Jk(λ)
padded from below by zeros. Similarly, we conclude that [f ]B,B is in Jordan
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normal form, with m blocks corresponding to the chains C1, . . . , Cm. Note
that [f ]B,B is similar to A.

Observation 9. If A is similar to a matrix in Jordan normal form that
contains t Jordan λ-blocks of total size m, then λ is an eigenvalue of A
with algebraic multiplicity m and geometric multiplicity t. Consequently, the
geometric multiplicity of any eigenvalue is at most as large as its algebraic
multiplicity.

Example 3. Find the Jordan normal form of the matrix

A =

 3 1 2
3 3 4
−2 −1 −1

 .

We know that A has an eigenvalue 1 of algebraic multiplicity 1 and an
eigenvalue 2 of algebraic multiplicity 2 and geometric multiplicity 1. There-
fore, the Jordan normal form of A is

D =

1 0 0
0 2 1
0 0 2

 .

The eigenvectors (0,−2, 1) (eigenvalue 1) and (1, 1,−1) (eigenvalue 2)
form the first elements of the chains of generalized eigenvectors. The second
element v for the eigenvalue 2 must satisfy (A − 2I)v = (1, 1,−1)T , which
has a solution v = (−1, 0, 1). Hence A = CDC−1, where

C =

 0 1 −1
−2 1 0
1 −1 1

 .

Example 4. Solve the system of linear differential equations

f ′ = 3f + g + 2h

g′ = 3f + 3g + 4h

h′ = −2f − g − h

for functions f, g, h : R→ R.
Note that d

dx
(f, g, h)T = (f ′, g′, h′)T = A(f, g, h)T = CDC−1(f, g, h)T for

the matrices A, C, and D from Example 3. Equivalently, d
dx
C−1(f, g, h)T =
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DC−1(f, g, h)T . Let (f1, g1, h1)
T = C−1(f, g, h)T ; hence, we need to solve the

system d
dx

(f1, g1, h1)
T = D(f1, g1, h1)

T , i.e.,

f ′1 = f1

g′1 = 2g1 + h1

h′1 = 2h1

The general solution for the equation r′ = αr is r(x) = Ceαx for any constant
C. Hence, f1(x) = C1e

x and h1(x) = C2e
2x. Then, g′1 = 2g1 + C2e

2x, which
has solution g1(x) = C2xe

2x + C3e
2x for any constant C3. Therefore, the

solution is (f1, g1, h1) = C1(e
x, 0, 0) +C2(0, xe

2x, e2x) +C3(0, e
2x, 0), i.e., any

element of
span((ex, 0, 0), (0, xe2x, e2x), (0, e2x, 0)).

Hence (f, g, h)T = C(f1, g1, h1)
T can be any element of

span(C(ex, 0, 0)T , C(0, xe2x, e2x)T , C(0, e2x, 0)T ) =

span
(
(0,−2ex, ex)T , ((x− 1)e2x, xe2x, (1− x)e2x)T , (e2x, e2x,−e2x)T

)
.

Observation 10. For any n ≥ 1, we have

[Jk(λ)]n =


λn

(
n
1

)
λn−1

(
n
2

)
λn−2 . . .

0 λn
(
n
1

)
λn−1

(
n
2

)
λn−2 . . .

0 0 λn
(
n
1

)
λn−1

(
n
2

)
λn−2 . . .

. . .

 .

Definition 6. For a square matrix A, let

exp(A) =
∞∑
k=0

Ak

k!
.

Observation 11. If A = CDC−1, then exp(A) = C exp(D)C−1,

exp(Jk(λ)) =


eλ eλ

1!
eλ

2!
. . .

0 eλ eλ

1!
eλ

2!
. . .

0 0 eλ eλ

1!
eλ

2!
. . .

. . .

 ,

and

exp(Jk(λ)x) =


eλx xeλx

1!
x2eλx

2!
. . .

0 eλx xeλx

1!
x2eλx

2!
. . .

0 0 eλx xeλx

1!
x2eλx

2!
. . .

. . .

 ,
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Example 5. The solutions to a system of differential equations v′ = Av are
v(x) ∈ Col(exp(Ax)).

In Example 4, we have

exp(Ax) = C exp(Dx)C−1 = C

ex 0 0
0 e2x xe2x

0 0 e2x

C−1,

and thus the set of solutions is

(f, g, h)T ∈ Col

C
ex 0 0

0 e2x xe2x

0 0 e2x

 .
Lemma 12. For any polynomial p and an n×n matrix A, if λ1, . . . , λn are
the eigenvalues of A listed with their algebraic multiplicities, then p(λ1), . . . ,
p(λn) are the eigenvalues of p(A) listed with their algebraic multiplicities.

Proof. By Lemma 1, Observation 3 and Theorem 8, it suffices to prove this
for matrices in Jordan normal form. Suppose that A1, . . . , Am are the Jordan
blocks of A. Then p(A) is a matrix consisting of blocks p(A1), . . . , p(Am) on
the diagonal, and the list of eigenvalues of p(A) is equal to the concatenation
of the lists of eigenvalues of p(A1), . . . , p(Am). Therefore, it suffices to prove
the claim for a Jordan block Jk(λ). By Observation 10, the matrix p(Jk(λ))
is upper triangular and its entries on the diagonal are all equal to p(λ), and
thus it has eigenvalue p(λ) with the algebraic multiplicity k.

4 Cayley-Hamilton theorem

Theorem 13 (Cayley-Hamilton theorem). If p is the characteristic polyno-
mial of an n× n matrix A, then p(A) = 0.

Proof. By Lemma 1, Observation 3 and Theorem 8, it suffices to prove this
for matrices in Jordan normal form. Suppose that A1, . . . , Am are the Jordan
blocks of A. Then p(A) is a matrix consisting of blocks p(A1), . . . , p(Am)
on the diagonal, and p is the product of characteristic polynomials of A1,
. . . , Am. Hence, it suffices to show that pi(Ai) = 0 for the characteristic
polynomial pi of Ai. However, if Ai = Jk(λ), then pi(x) = (λ − x)k, and
pi(Ai) = (λI − Ai)k = 0.

Example 6. Let A =

 3 1 2
3 3 4
−2 −1 −1

. The characteristic polynomial of A

is p(x) = −x3 + 5x2 − 8x+ 4.
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Note that A2 = AA =

 8 4 8
10 8 14
−7 −4 −7

 and A3 = A2A =

 20 12 24
26 20 38
−19 −12 −23

 .

We have p(A) = −A3 + 5A2 − 8A+ 4I = 0.

Corollary 14. Let A be an n×n matrix. Then for any m ≥ 0, the matrix Am

is a linear combination of I, A, A2, . . . , An−1, and thus the space of matrices
expressible as polynomials in A has dimension at most n. Furthermore, if A
is regular, then A−1 is contained in this space as well.
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