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Abstract: The quasi-particle and the boson approximation are used in the study of the first
04 excited state of the pairing force: a special case is chosen for its simplicity, which allows
us to study quantitatively the validity of these approximations. This validity shows a strong
dependence with respect to the coupling constant and to the degeneracy of the shell-model
levels.

1. Introduction

The pairing force, which was first introduced by Racah in 1943 as a conven-
ient mathematical tool for the classification of the atomic levels, has been
shown in the last few years to be a very good approximation of the short-range
part of the nuclear forces for several problems of nuclear physics. Both these
reasons, physical interest and mathematical simplicity, led us to study the
quasi-particle approximation which is generally used to account for the
pairing force !), and the boson approximation 2) which is used for more general
problems (especially for the so-called collective vibrations) but which will be
shown to be a logical extension of the first one 1.

We shall limit ourselves to the study of the first 0 excited state. The
Hamiltonian of a system of nucleons interacting in an average potential by a
pairing force is .

H= Z &; a;ma;’m - %G Z (_)j_m(_)j/_m’ a;’mazf'—maj’—m’ Ljrm s (1)
" i
where j labels a shell. We get rid of the magnetic quantum numbers # by
defining the following operators:
1 S (—)™al,al A _ L S (—)™a;_,a
’\/-Qj o im%¥i—m> F) '\/'Qj o i—m%im> (2)

— t
Ni - Z a;'maim'
m

A,T:

t See also a similar study by P. W. Anderson %), made in the frame of the random-phase
approximation in superconductivity.
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where £, is the half-degeneracy of the j-shell. These operators obey the follow-
ing commutation relations:

A, A =56 (1 N") 3
(A:, A1) = dy, '"Ei’ (3)
[Ni» A;'f] = 6:';'2/1"*' (4)
Thus onc has
H=S&NAGCIVRVQAA,. (1)
i ij

Exact solutions are known in two cases:

I. The degenerate case. As is well known 3), the ground state is proportional
to (z,.\/.?);AiT)*ﬂO). The first excited 0-+ states (seniority 2) are proportional
to (3 VAN (3, V,A,1)0> with 3,¢,Q, = 0. If p is the number of
shells, there are p—1 such states, all degenerate, the energy of which is
W = |G|3.£;.

I1. The two-particle case. Looking for an operator I't = Y ¢, 4} such that
HTI't)0) = WI't0), we are led to write

— — N .
(H T =3 ¢2, A4+ GIVQAS ¢, VO, (1—15').
The operators N, acting on the vacuum give no contribution and we find the
following eigenvalue equation:

2,

1
¢ 2w ®)

1

which may be solved graphically. This suggests the following approximation:
if we have few particles in rather large shells, we may forget about the Pauli
principle, in other words neglect the term N,/Q, in eq. (3). In this approxima-
tion, pairs of fermions are just bosons and the Hamiltonian (1’) describes a
system of bosons in a one-body potential. This problem admits solutions given
by eq. (5). However, when we have too many particles, we have first to
perform a canonical transformation in order to get a good approximation.

2. The Quasi-Particle and the Quasi-Boson Approximations
2.1 THE QUASI-PARTICLE SCHEME

We define quasi-particles by the Bogoliubov-Valatin transformation

W = w;al,—v,(—)Y"a,_,, v =1, (6)
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and, as in the case of particles, we define the following operators:

1 ) 1
z ('—)]—ma;ma}—m: d;‘ = z (—)j_mal—malm’

V8 wSo V82, mSo (7)
‘/Vi = 2 a}m“im’

o=

satisfying the commutator relations

(&, 1] = 6(:’(1—
[‘A/i’ d;’*] = 5ij2dit~ (9)

We rewrite the pairing Hamiltonian (introducing a chemical potential 1) in
terms of these new operators:

H = U+H11+ (H20+H02)+H0+Hm,
U =3 (si_1)2vi29i+G(Z'Qiuivt')zr

3

H, = z [(e,— ) (u2—v2) —2Gu,v,(2 Q;u,0,) 14,
: 7
Hyo+ Hop = 3 [(6,—2)2u,2, \/5,.—{—(;(;Q,u,v,)\/ﬁ,.(u,.z—viz)](.MJ-{—.M,), (10)
H, =G gj VRV, (ural t—v2sd ) (ured ,—v 2 1),
Hieg = G 3 V2, (—up (N (up o ,—v 2l 1)+ (upred } —v 2l ) N}
N +G§u,.v,.u,.v,./1/,../1f,.

The parameters % and v are chosen in order to cancel Hyy+ Hy,. The parameter 4
is chosen so that the ‘““vacuum’’ of the quasi-particle space, defined by «,|¢e>=0,
will be an approximation for a system of # particles:

{$o(A)IN$o(4)) = 7.

Consequently, we obtain the well-known equations

g,—A g,—A
u'i2=%(1+ E )l 7)‘2=%(1— E )’ (12)
L2, 2
L 13a
)3 E| c (13a)
3 0, (1_ 6‘;") —n (13b)

E,= VA4 (e,—2)2 4= —GIQuu,. (14)
s
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Now the Hamiltonian (10) describes a system of quasi-particles interacting
in an average potential by means of a two-body force.

The quasi-particle approximation consists in keeping only the free quasi-
particle Hamiltonian 'y = U+ H,,. The 0+ excited states are |¢,> = &, 1|¢¢>,
the energy of which is W, = 2E, = 2V 4%+ (¢;,—A4)2 There are p of them, one
more than the right value: this “spurious’’ state, the existence of which arises
from the non-conservation of the number of particles, is mixed up with the
others. In the limit where G is very large, we find the degenerate case, and the
value |G|Y,; 2, for the excited states, but we have still a spurious state.

2.2. THE QUASI-BOSON APPROXIMATION

From eq. (10) we see that H,; and H, are of the order of magnitude G2
(where £ is the total degeneracy of the system), while terms of H,e, are of the
order of G4/ or even 1 and, besides, include the .47, operators. If the quasi-
particle scheme is a rather good approximation, the low lying states will have
only a few quasi-particles. Also if £2 is large, a consistent approximation will
be to keep only H, for the interaction of the quasi-particles and neglect the
Pauli principle for the pairs of quasi-particles, i.e., use the following approxi-
mate commutator rules instead of (8):

[‘Mi’ 'Mi*] = 6:’1- (8,)

Now we are led again to a system of bosons with a one-body force. To find the
canonical transformation which diagonalizes the Hamiltonian it is convenient
to go to the “‘space’ variables. We define

q: = %\/E(Mﬁ‘"{i*): .= _%i’\/ﬁ(di_di*)' (15)
Then we get
—A
G.E. + H(qi» P,
: . (16)
Hg,, p,) = E‘ Ei‘/‘/‘i_*_}é'c {(z \/-(7; ig_ qi) + (E\/b—, P

13

Hy+He =363 0,

We are looking for
Q;,= gijiqi’ P, = ;/‘u@: (17)
so that
Q.. P,]=14,, [Q.H]=1iB,P, [P, H]l= —iC.Q,. (18)

The energies we are looking for are W, = V' B,C,.
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By straightforward calculations one finds

GVQ, 4E 21,04 2(e,—2) B, A,

Ay = — 2F, 4E2—W 2
C, A,V 42(e,—A)A,® (19)
= — Q, '
GV 4EE-_Wp

where A4, and 4,® are two constants defined by the following equations:

- — g, —4
A0 = Z;,h.\/gi, A, = Z,u,.,.\/Q‘. ezE .

t

(20)

Inserting (19) into (20), we obtain the following equations for A, and 4,

2.(e,—4
1+Gz !ii AW+ G(3 % B;A» =0,
4E, v EMEE-W ) (21)

Defining

2, (e;—4)

= Swarewy - Snaeewy

and using (13a), we can write (21) in a simpler way, viz.,
W2a,4,04+6,B,4,% =0,  C;b,A,V+ (W 2—44%)a,4,% = 0. (21)

The condition of solvability of this equation gives the eigenvalue equation

W2(W.2—44%)a? = b2 W 2. (23)
There are two cases to be considered.
1) W, %0
Let us put

Y2 = Wj2i—442 (24)
Using (23) and (22) one finds

2,
__—' e = 0, (25)
Z E(y;+2(e,—42))
If 4 and 4 are known, these equations can be solved graphically. Let us notice
the important fact that there are just #—1 solutions. This is the right number
of our excited states. We shall see below that the whole spurious state has been
taken up by the W = 0 solution. The case when the ¢, are symmetrical with
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respect to the A-value is of special interest: because of the symmetry, the
y = 0 solution leads to the lowest eigenvalue W = 24: this is just the gap.
From eq. (13b), we see that, in order to obtain this situation, we need two
things: a symmetrical distribution of the shell model energy levels, and a
number of particles which is just half the total degeneracy of the system 1.
In the limit where all the levels are degencrate, it is a half-filled shell. In sect. 3,
we shall study the case of two levels. One can write (19) in thefollowing form:

=] WAVE, wz]—cA,.m V(=64
T LE(2E—N+y,) U OE, 12w, T a1y,

3

(26)
A, is a normalisation constant so that Y,4,,u,, = L.

2) W=0

This solution can occur only for 4 5 0 and corresponds to B = 0. This extra
degree of freedom which introduces a continuous spectrum clearly does not
belong to our physical problem. In fact, it is easy to see that the wave function
Qoldo> describes a linear combination of the ground states of the neighbouring
nuclei such that the average value of the number of particles is nevertheless
equal to n. Eq. s(19) give

A0 =4 \/5 = KV “3+I§_2 A)bs. 27)
with 1 ‘
; EE' , by = ZILZ;—A-) K,A(42a2+b2) = 1
The Hamiltonian can be rewritten as follows:
R = §Co0i+33 WP +0) (28)

The canonical transformation is given by formulas (17), (26), (27). Thus,
including H, in the Hamiltonian leads to the elimination of the spurious state.
However, the number of particles is not yet a good quantum number, some
terms in H, are playing an important role in this respect.

2.3, THE AVERAGE NUMBER OF PARTICLES IN THE QUASI-BOSON
APPROXIMATION

The Bogoliubov-Valatin transformation has been chosen so that the average
number of particles in the quasi-particle vacuum has the correct value #»:

{o|N|o> = n.

t This is precisely the case in superconductivity.
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This is not true any more for an excited state. If this excited state is built
up with 2 quasi-particles from the j-shell, we have

g,—A

($;IN|¢;> =n+2 jE, .

For G large, i.e. 4 large, the extra-term is small. But for 4 = 0, it is just $2:
the state ¢, describes a system with #n+2 or n—2 particles.

In the quasi-boson approximation, let us consider the operators of creation
and annihilation of the system of bosons which diagonalize the Hamiltonian

F;+ = %‘X/E(QJ‘*":P;L FJ = %—\/ﬁ(Q,—iP,),

The number of particles in terms of & and &/t operators is

N =

‘/EQ AN+ A (29)

The ground state is the vacuum of the new bosons: I';|y,> = 0. The first

excited states are [y,> = I'J*|y,>, and by straightforward calculations (see
Appendix 2) one gets

—A —A
N =nipo> = 3 (kB - — 375"
» (30)
<y IN—nly)> = (oIl N—n]pp)> +E A A

l

As the (¢;,—A) have no definite signs, these quantities are rather small in general.
One can see that they are identically 0 for the symmetrical case.

If we look at the limit of the degenerate case, we realize that, concerning the
average number of particles, the approximation improves as the number of
particles increases in the shell, and is best in the middle of the shell.

2.4. THE CASE OF THE COMPLETE SHELLS

As can be seen from eq. (13b), in this case and only in this case, 4 = 0,
when |G| is smaller than a critical value |G,|. Then the quasi-particles just
define particles and holes, as usually. The eigenvalue equation is

1 [6) ()

c=2 w—2(;,——1) - w—z(;—zy B1)

where ¢, is above the Fermi surface and ¢,, is under the Fermi surface. In this
case, one boson creates two particles or two holes, and two bosons are necessary
to get the right number of particles. Fig. 1 represents the solution of eq. (31).
The energy of the first excited state is indicated by arrows. When |G| increases
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from 0 to |G,|, the energy of the first excited state decreases, and is 0 when
G = G,. Then 4 becomes different from 0 and the quasi-particle scheme starts.
This is an illustration of the general relation between the stability of the Hartree
Fock solution and the boson approximation (4).

)\

Fig. 1. The solution of eq. (31).

3. The Two-Shell Symmetrical Case

We use this case in order to compare the approximations studied in the last
section with the actual solution. Let ¢ be the distance of the shells, :{:%e their
energy and 2 the common degeneracy; we have n = 2Q. In the limit of G = 0,
we have a complete shell, in the limit of G = — oo, a half-filled shell.

\
\/

as |G\R/2¢
Fig. 2. W/2¢ as a function of |G|£2/2¢ for different values of Q.
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The quasi-particle approximation gives 2 degenerate excited states 2E, =
2E, = 2|G|. The critical value G, for which 4 = 0, is given by |G/|Q2 = Z¢.
For |G| < |G.|, the Boson approximation gives Wy = 2¢(1—2|G|2/2¢)t; for
|G| > |G,|, the quasi-Boson approximation removes the spurious state. One
remains with a one-shell problem, the Hamiltonian of which is

2
H = 2|G|QB'B— ¢;—é (Bt+B)2, with Bt = 1y/3(of,t—ayt).  (32)

'v' o
1 1
Qs 1GIR/2¢ 1
Fig. 8. Comparison of the different approximations (the thin curve is the case 2 = 10 taken from
fig. 2).

One clearly sees the interchange of the roles of |G|2 and ¢ as a result of the
quasi-particle transformation. Diagonalization leads to the energy Wy, = 2
(IG|2Q22—1e*)t. These curves are plotted in dotted lines on fig. 2. The exact
solution was obtained with electronic computors (in Lund and in Paris),
for the following values of £:

2 =3, 6, 10, 20.

One can see how the approximation improves when £ increases. One sees also
how good the quasi-boson approximation is for |G|>|G,|. On the other hand,
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the agreement is not as good for the boson approximation when [G|<<|G,|.
This might be explained by the fact that, to construct our state, we must here
use two bosons instead of one. In fact, a first-order perturbation

. 1
W, = 2¢—2|G|Q (l— !—2)

is even better in this region, as can be seen from fig. 3 (the case 2 = 10).
Fig. 3 shows also the result of a first-order perturbation on the free quasi-
particle Hamiltonian: the degeneracy is removed, the spurious state is isolated,
and the result for the physical state is almost the same as the one obtained by
the quasi-boson approximation;:

G|,
Wi = |G| (2 © ) in the limit where Q is large

——i e li e 21s .

SETEEYE &
There remains a region around the critical value G, where no approximation is
valid. One could see that, in that region, the average value of the number of
quasi-particles in the ground state of the quasi-boson approximation becomes
infinite, stressing the fact that the Pauli principle plays a decisive role in this
region.
4. Conclusion

We have seen that for the treatment of the pairing force when no exact
solution is known, a quasi-particle method with a first order perturbation or a
boson approximation gives very satisfactory results, apart for values of the
coupling constant in an intermediate region.

The advantage of the boson approximation over the perturbation method
is that it removes completely the spurious state of the quasi-particle approxima-
tion, and that it can be applied to quite different problems than the one dis-
cussed here, for which a perturbation would not give any satisfactory results.

This work was begun during the author’s stay at the Institute for Theoretical
Physics of Copenhagen. It is a pleasure for her to thank Professors Niels Bohr
and Aage Bohr for their kind hospitality, and Professor Mottelson for suggesting
this problem, and several illuminating discussions.

Appendix 1.
THE MATRIX ELEMENTS OF THE PAIRING FORCE
We are studying the space generated by A; operators. An orthonormal set
of vectors for this space is

1
oo > =11 :/*[: A0,

;
nlt
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with

(7] = % (R,—n,+1),

[

nt = [ndin—1). . 1) = 5 (—[’)‘%
Then we have
At oo > = V41l .. sty D
Alcome. . >=V[n] |..;0—8y.. D

These equations are very similar to those of real bosons, the difference being
in the second term in the definition of [%#,], which comes from the Pauli
principle. One finds for the pairing force

Hi..n..>= (§2sknk)|...n,‘...>

+G% \/?2:'[”5_6-7‘*'1]9{ (]l At Oy— 0y - - D
4

Appendix 2.

THE OPERATOR N IN THE QUASI-BOSON APPROXIMATION

We start from the definition of the Q and P operators with respect to the
p and ¢ operators:

Q = Ag, P = up, with Aut = 1.
We then get the inverse formulas
g=u'0Q,  p=AP
which lead to the following expression for the ./ operators:
o = Lt -+ AN St — AN,
Thus, we rewrite

N=320D ot va 0, = et /30,

)

as a function of the I" operators:

N = Tt (uvut + Ay AT 3T (4 Ay v(ut —AN T
+ T(u—A)(ut + AN+ L Tr(uvput + AvAt —2v) 4 Ty +Tot.
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