Termodinámica y Mecánica Estadística Maestría en Física Contemporánea *Prof. Marisa Alejandra Bab*

Fecha		Temas	
26/2	Clase 1:	Sistema termodinámico y su entorno; paredes o ligaduras externas e internas; sistemas cerrados, abiertos y aislados; y variables extensivas e intensivas. Leyes de la termodinámica. Trabajo y energía. Temperatura y Calor. Experimento Joule.	TP1
5/3	Clase 2:	Segunda ley de la termodinámica: enunciados de Clausius y Thomson-Kelvin, equivalencia. Ciclo de Carnot. Entropía. Funciones de estado y diferenciales exactos. Tercera ley de la Termodinámica e imposibilidad del cero absoluto.	TP1
12/3	Clase 3:	La ecuación fundamental y el principio extremal en las representaciones entrópica y energética, homogeneidad y extensividad. Relación entre los parámetros intensivos y las derivadas primeras de la energía y de la entropía. Ecuaciones de estado. Ecuaciones de Gibbs, Euler y Gibbs-Duhem. Calor especifico y otras funciones respuesta.	TP2 Cierre cuestionario 1
19/3	Clase 4	Condiciones de equilibrio a partir del principio extremal entrópico: térmico, mecánico, respecto de flujo de materia. Procesos reversibles, irreversibles y cuasiestaticos. Expansión libre, ejemplos. Tranformaciones de Legendre y potenciales termodinámicos.	TP2
26//3	Clase 5	Ecuaciones de estado y principio extremal para los potenciales termodinámicos: energía libre de Helmhotz, entalpía, energía libre de Gibbs y el gran potencial. Funciones respuesta, criterios de estabilidad y su relación con los potenciales.	TP2
27/3	Clase 6	Transición de fase como consecuencia de la violación de los criterios de estabilidad. Estados estable, metaestable e inestable. Diagramas de fase P-T y P-V. Regla de las fases de Gibbs. Transiciones de primer orden: calor latente y ecuación de Clausius-Clapeyron. Condensación de un fluido de van der Waals. Construcción de Maxwell y regla de la palanca. Transiciones de fase continuas, punto crítico y universalidad.	TP3 Cierre cuestionario 2
2/4	feriado	Consultas por foro TP3	TP3
9/4	Clase 7	Especificación de microestados. Espacio fásico. Postulado de igualdad de probabilidad a priori. Entropía de Boltzmann. Aplicaciones gas ideal y oscilador armónico.	
23/4	Clase 8	La paradoja de Gibbs, la entropía de Mezcla. Hipótesis ergódica. Entropía de Gibbs. Sistema aislado, el conjunto Microcanónico. Condiciones de equilibrio. Relaciones con las variables termodinámicas. Partículas distinguibles e indistinguibles.	TP4
30/4	Clase 9	Sistema en contacto con una fuente de calor, el conjunto Canónico. Aplicación al gas ideal. Partículas no interactuantes. Equivalencia entre conjuntos estadísticos. Equipartición de la energía y predicción del calor especifico de un gas diatónico y un sólido. Sistema abierto: el conjunto gran canónico.	TP4
7/5	Clase 10	Aplicaciones: el modelo de sólido de Einstein, presión de vapor en equilibrio con un sólido y un líquido, adsorción.	TP5 Cierre cuestionario 4
14/5	Clase 11	Teoría cinética de los gases: distribución de probabilidades de Maxwell, camino libre medio, frecuencia de colisión. Aplicación a fenómenos de transporte; viscosidad.	TP5
21/5	Clase 12	Discusión sobre estadísticas cuánticas.	TP5 Cierre cuestionario 5