
QM Handout – Gaussian Integration

Gaussian integration is simply integration of the exponential of a quadratic.
We cannot write a simple expression for an indefinite integral of this form
but we can find the exact answer when we integrate from −∞ to ∞. The
basic integral we need is

G ≡
∫ ∞

−∞
dxe−x2

The trick to calculate this is to square this using integration variables x and
y for the two integrals and then evaluate the double integral using polar
coordinates. N.B. from now on we will simply drop the range of integration
for integrals from −∞ to ∞. So

G2 =
∫

dxe−x2
∫

dye−y2
=

∫
dx

∫
dye−(x2+y2)

=
∫ 2π

0
dθ

∫ ∞

0
drre−r2

= 2π

∫ ∞

0

1
2
d(r2)e−r2

= π

This gives the important result∫
dxe−x2

=
√

π

For a real constant a > 0 a change of variables gives

G(a) ≡
∫

dxe−ax2
=

1√
a

∫
d(
√

ax)e−(
√

ax)2 =
√

π

a

For a general quadratic exponent we simply complete the square and
then integrate using a similar change of variables∫

dxe−ax2+bx+c =
∫

dxe−a(x− b
2a

)2e
b2

4a
+c =

√
π

a
e

b2

4a
+c

These results extend to the case of complex numbers a, b and c provided
the real part of a is positive. We can also consider the case where a is
purely imaginary (but non-zero) which can be justified by first multiplying
the integrand by e−εx2

for positive real ε, and then taking the limit ε → 0
after integrating.

Now we can also calculate integrals involving a polynomial times the
exponential of a quadratic. By completing the square for the quadratic we
can reduce such an integral to a sum of integrals of the form∫

dxxNe−ax2

where N is a non-negative integer and, restricting to real coefficients, the
constant a must be positive for the integral to be well-defined. We can
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easily calculate this integral using integration by parts, integrating xe−ax2

and differentiating xN−1. This relates the integral to another of the same
type but with N replaced by N − 2, giving a recursion relation. Using this
method we get the following results for non-negative integers n:

∫ ∞

−∞
dxx2ne−ax2

=
(2n− 1)(2n− 3) · · · 3 · 1

(2a)n

√
π

a
(1)∫ ∞

−∞
dxx2n+1e−ax2

= 0 (2)∫ ∞

0
dxx2ne−ax2

=
1
2

(2n− 1)(2n− 3) · · · 3 · 1
(2a)n

√
π

a
(3)∫ ∞

0
dxx2n+1e−ax2

=
n!

2an+1
(4)

Note that by symmetry, results (1) and (3) are related by a factor of
2 since the integrand is an even function, while result (2) follows from the
integrand being an odd function.

It is also possible to derive these results by considering a to be a variable
and differentiating with respect to a. For example starting with

G(a) ≡
∫

dxe−ax2
=

√
π

a

and differentiating with respect to a we get

G′(a) =
∫

dx(−x2)e−ax2
= −1

2

√
π

a3/2

which gives ∫
dxx2e−ax2

=
√

π

2a3/2

in agreement with result (1) for n = 1.
As an aside, you will have noticed the n! appearing in result (4) and the

somewhat similar product in result (3), after dividing the numerator by 2n

(n− 1
2
)(n− 3

2
) · · · 3

2
· 1
2

Indeed we can define a complex function, known as the gamma function,
which can be viewed as an extension of the factorial function, by

Γ(z) = 2
∫ ∞

0
dxx2z−1e−x2

for <(z) > 0 which satisfies the recurrence relation

zΓ(z) = Γ(z + 1)

This recurrence relation allows us to extend the definition to all z ∈ CC and
from result (4) we see that for any positive integer n, Γ(n) = (n− 1)!.
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